Abstract
In this chapter we present literature review on UAV monitoring systems that utilized deep learning algorithms to ensure improvement on plant and animal production yields. This work is important because of the growing world population and thus increased demand for food production, that threaten food security and national economy. Hence the need to ensure sustainable food production that is made more complicated with the advent of global warming, occupational preference for food consumption and not food production, diminishing land and water resources. We choose to consider studies that utilize the UAV platform to collect images compared to satellite because UAVs are easily available, cheaper to maintain, and the collected images can be updated at any time. Previous studies with research foci on plant and animal monitoring are evaluated in terms of their advantages and disadvantages. We looked into different deep learning models and compared their model performances in using various types of drones and different environmental conditions during data gathering. Topics on plant monitoring include pest infiltration, plant growth, fruit conditions, weed invasion, etc. While topics on animal monitoring include animal identification and animal population count. The monitoring systems used in previous studies utilize computer vision that include processes such as image classification, object detection, and segmentation. It aids in increasing efficiency, high accuracy, automatic, and intelligent system for a particular task. The recent advancements in deep learning models and off-the-shelf drones open more opportunities with lesser costs and faster operations in most agricultural monitoring applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdulridha, J., Ampatzidis, Y., Kakarla, S. C., & Roberts, P. (2020). Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precision Agriculture, 21(5), 955–978.
Al-Thani, N., Albuainain, A., Alnaimi, F., & Zorba, N. (2020). Drones for sheep livestock monitoring. In 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON) (pp. 672–676). IEEE.
Alzadjali, A., Alali, M. H., Sivakumar, A. N. V., Deogun, J. S., Scott, S., Schnable, J. C., & Shi, Y. (2021). Maize tassel detection from UAV imagery using deep learning. Frontiers in Robotics and AI, 8.
de Andrade Porto, J. V., Rezende, F. P. C., Astolfi, G., de Moraes Weber, V. A., Pache, M. C. B., & Pistori, H. (2021). Automatic counting of cattle with faster R-CNN on UAV images. In Anais do XVII Workshop de Visão Computacional, SBC (pp. 1–6).
Andrew, W., Greatwood, C., & Burghardt, T. (2017). Visual localisation and individual identification of holstein friesian cattle via deep learning. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 2850–2859).
Andrew, W., Greatwood, C., & Burghardt, T. (2019). Aerial animal biometrics: Individual friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 237–243). IEEE.
Anghelache, D., Persu, C., Dumitru, D., Băltatu, C., et al. (2021). Intelligent monitoring of diseased plants using drones. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 51(2), 146–151.
Apolo, O. E. A., Guanter, J. M., Cegarra, G. E., Raja, P., & Ruiz, M. P. (2020). Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. European Journal of Agronomy: The Official Journal of the European Society for Agronomy, 115(4), 183–194.
Apolo-Apolo, O. E., Pérez-Ruiz, M., Martínez-Guanter, J., & Valente, J. (2020). A cloud-based environment for generating yield estimation maps from apple orchards using UAV imagery and a deep learning technique. Frontiers in Plant Science, 11, 1086.
Ayamga, M., Akaba, S., & Nyaaba, A. A. (2021). Multifaceted applicability of drones: A review. Technological Forecasting and Social Change, 167(120), 677.
Bah, M. D., Hafiane, A., & Canals, R. (2018). Deep learning with unsupervised data labeling for weed detection in line crops in UAV images. Remote Sensing, 10(11), 1690.
Barbedo, J. G. A., & Koenigkan, L. V. (2018). Perspectives on the use of unmanned aerial systems to monitor cattle. Outlook on Agriculture, 47(3), 214–222.
Barbedo, J. G. A., Koenigkan, L. V., Santos, T. T., & Santos, P. M. (2019). A study on the detection of cattle in UAV images using deep learning. Sensors, 19(24), 5436.
Barbedo, J. G. A., Koenigkan, L. V., & Santos, P. M. (2020). Cattle detection using oblique UAV images. Drones, 4(4), 75.
Barbedo, J. G. A., Koenigkan, L. V., Santos, P. M., & Ribeiro, A. R. B. (2020). Counting cattle in UAV images-dealing with clustered animals and animal/background contrast changes. Sensors, 20(7), 2126.
Behjati, M., Mohd Noh, A. B., Alobaidy, H. A., Zulkifley, M. A., Nordin, R., & Abdullah, N. F. (2021). Lora communications as an enabler for internet of drones towards large-scale livestock monitoring in rural farms. Sensors, 21(15), 5044.
Bhoi, S. K., Jena, K. K., Panda, S. K., Long, H. V., Kumar, R., Subbulakshmi, P., & Jebreen, H. B. (2021). An internet of things assisted unmanned aerial vehicle based artificial intelligence model for rice pest detection. Microprocessors and Microsystems, 80(103), 607.
Bhoj, S., Tarafdar, A., Singh, M., Gaur, G. (2022). Smart and automatic milking systems: Benefits and prospects. In Smart and sustainable food technologies (pp. 87–121). Springer.
Bouguettaya, A., Zarzour, H., Kechida, A., Taberkit, A. M. (2021). Recent advances on UAV and deep learning for early crop diseases identification: A short review. In 2021 International Conference on Information Technology (ICIT) (pp. 334–339). IEEE.
Bouguettaya, A., Zarzour, H., Kechida, A., & Taberkit, A. M. (2022). Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural Computing and Applications, 34(12), 9511–9536.
Brunberg, E., Eythórsdóttir, E., Dỳrmundsson, Ó. R., & Grøva, L. (2020). The presence of icelandic leadersheep affects flock behaviour when exposed to a predator test. Applied Animal Behaviour Science, 232(105), 128.
de Camargo, T., Schirrmann, M., Landwehr, N., Dammer, K. H., & Pflanz, M. (2021). Optimized deep learning model as a basis for fast UAV mapping of weed species in winter wheat crops. Remote Sensing, 13(9), 1704.
Cauli, N., & Reforgiato Recupero, D. (2022). Survey on videos data augmentation for deep learning models. Future Internet, 14(3), 93.
Chandy, A., et al. (2019). Pest infestation identification in coconut trees using deep learning. Journal of Artificial Intelligence, 1(01), 10–18.
Chen, C. J., Huang, Y. Y., Li, Y. S., Chen, Y. C., Chang, C. Y., & Huang, Y. M. (2021) Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access, 9, 21,986–21,997.
Chen, J. W., Lin, W. J., Cheng, H. J., Hung, C. L., Lin, C. Y., & Chen, S. P. (2021). A smartphone-based application for scale pest detection using multiple-object detection methods. Electronics, 10(4), 372.
Chen, Y., Lee, W. S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., & He, Y. (2019). Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages. Remote Sensing, 11(13), 1584.
Chew, R., Rineer, J., Beach, R., O’Neil, M., Ujeneza, N., Lapidus, D., Miano, T., Hegarty-Craver, M., Polly, J., & Temple, D. S. (2020). Deep neural networks and transfer learning for food crop identification in UAV images. Drones, 4(1), 7.
Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., & Sun, X. (2021). A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6), 1204.
Dileep, M., Navaneeth, A., Ullagaddi, S., & Danti, A. (2020). A study and analysis on various types of agricultural drones and its applications. In 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) (pp. 181–185). IEEE
Espejo-Garcia, B., Mylonas, N., Athanasakos, L., Vali, E., & Fountas, S. (2021). Combining generative adversarial networks and agricultural transfer learning for weeds identification. Biosystems Engineering, 204, 79–89.
Etienne, A., Ahmad, A., Aggarwal, V., & Saraswat, D. (2021). Deep learning-based object detection system for identifying weeds using UAS imagery. Remote Sensing, 13(24), 5182.
Feng, J., Sun, Y., Zhang, K., Zhao, Y., Ren, Y., Chen, Y., Zhuang, H., & Chen, S. (2022). Autonomous detection of spodoptera frugiperda by feeding symptoms directly from UAV RGB imagery. Applied Sciences, 12(5), 2592.
Fenu, G., & Malloci, F. M. (2021). Forecasting plant and crop disease: an explorative study on current algorithms. Big Data and Cognitive Computing, 5(1), 2.
Görlich, F., Marks, E., Mahlein, A. K., König, K., Lottes, P., & Stachniss, C. (2021). UAV-based classification of cercospora leaf spot using RGB images. Drones, 5(2), 34.
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48.
Hajar, M. M. A., Lazim, I. M., Rosdi, A. R., & Ramli, L. (2021). Autonomous UAV-based cattle detection and counting using YOLOv3 and deep sort.
Hande, M. J. (2021). Indoor farming hydroponic plant grow chamber. International Journal of Scientific Research and Engineering Trends, 7, 2050–2052.
Hasan, A. M., Sohel, F., Diepeveen, D., Laga, H., & Jones, M. G. (2021). A survey of deep learning techniques for weed detection from images. Computers and Electronics in Agriculture, 184(106), 067.
Herlin, A., Brunberg, E., Hultgren, J., Högberg, N., Rydberg, A., & Skarin, A. (2021). Animal welfare implications of digital tools for monitoring and management of cattle and sheep on pasture. Animals, 11(3), 829.
Huang, H., Lan, Y., Yang, A., Zhang, Y., Wen, S., & Deng, J. (2020). Deep learning versus object-based image analysis (OBIA) in weed mapping of UAV imagery. International Journal of Remote Sensing, 41(9), 3446–3479.
Iost Filho, F. H., Heldens, W. B., Kong, Z., & de Lange, E. S. (2020). Drones: innovative technology for use in precision pest management. Journal of Economic Entomology, 113(1), 1–25.
Ishengoma, F. S., Rai, I. A., & Said, R. N. (2021). Identification of maize leaves infected by fall armyworms using UAV-based imagery and convolutional neural networks. Computers and Electronics in Agriculture, 184(106), 124.
Islam, N., Rashid, M. M., Wibowo, S., Wasimi, S., Morshed, A., Xu, C., & Moore, S. (2020). Machine learning based approach for weed detection in chilli field using RGB images. In The International Conference on Natural Computation (pp. 1097–1105). Fuzzy Systems and Knowledge Discovery: Springer.
Jintasuttisak, T., Edirisinghe, E., & Elbattay, A. (2022). Deep neural network based date palm tree detection in drone imagery. Computers and Electronics in Agriculture, 192(106), 560.
Joshi, R. C., Kaushik, M., Dutta, M. K., Srivastava, A., & Choudhary, N. (2021). Virleafnet: Automatic analysis and viral disease diagnosis using deep-learning in vigna mungo plant. Ecological Informatics, 61(101), 197.
Junos, M. H., Mohd Khairuddin, A. S., Thannirmalai, S., & Dahari, M. (2022). Automatic detection of oil palm fruits from UAV images using an improved YOLO model. The Visual Computer, 38(7), 2341–2355.
Juyal, P., & Sharma, S. (2021). Crop growth monitoring using unmanned aerial vehicle for farm field management. In 2021 6th International Conference on Communication and Electronics Systems (ICCES) (pp. 880–884). IEEE
Kaivosoja, J., Hautsalo, J., Heikkinen, J., Hiltunen, L., Ruuttunen, P., Näsi, R., Niemeläinen, O., Lemsalu, M., Honkavaara, E., & Salonen, J. (2021). Reference measurements in developing UAV systems for detecting pests, weeds, and diseases. Remote Sensing, 13(7), 1238.
Kalantar, A., Edan, Y., Gur, A., & Klapp, I. (2020). A deep learning system for single and overall weight estimation of melons using unmanned aerial vehicle images. Computers and Electronics in Agriculture, 178(105), 748.
Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90.
Kerkech, M., Hafiane, A., & Canals, R. (2018). Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Computers and Electronics in Agriculture, 155, 237–243.
Kerkech, M., Hafiane, A., & Canals, R. (2020). Vddnet: Vine disease detection network based on multispectral images and depth map. Remote Sensing, 12(20), 3305.
Kerkech, M., Hafiane, A., & Canals, R. (2020). Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Computers and Electronics in Agriculture, 174(105), 446.
Kerkech, M., Hafiane, A., Canals, R., & Ros, F. (2020). Vine disease detection by deep learning method combined with 3D depth information. In International Conference on Image and Signal Processing (pp. 82–90). Springer.
Khan, S., Tufail, M., Khan, M. T., Khan, Z. A., & Anwar, S. (2021). Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer. Precision Agriculture, 22(6), 1711–1727.
Kitano, B. T., Mendes, C. C., Geus, A. R., Oliveira, H. C., & Souza, J. R. (2019). Corn plant counting using deep learning and UAV images. IEEE Geoscience and Remote Sensing Letters.
Kitpo, N., & Inoue, M. (2018). Early rice disease detection and position mapping system using drone and IoT architecture. In 2018 12th South East Asian Technical University Consortium (SEATUC) (Vol. 1, pp. 1–5). IEEE
Krul, S., Pantos, C., Frangulea, M., & Valente, J. (2021). Visual SLAM for indoor livestock and farming using a small drone with a monocular camera: A feasibility study. Drones, 5(2), 41.
Lan, Y., Huang, Z., Deng, X., Zhu, Z., Huang, H., Zheng, Z., Lian, B., Zeng, G., & Tong, Z. (2020). Comparison of machine learning methods for citrus greening detection on UAV multispectral images. Computers and Electronics in Agriculture, 171(105), 234.
Lan, Y., Huang, K., Yang, C., Lei, L., Ye, J., Zhang, J., Zeng, W., Zhang, Y., & Deng, J. (2021). Real-time identification of rice weeds by UAV low-altitude remote sensing based on improved semantic segmentation model. Remote Sensing, 13(21), 4370.
León-Rueda, W. A., León, C., Caro, S. G., & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167.
Li, B., Yang, B., Liu, C., Liu, F., Ji, R., & Ye, Q. (2021) Beyond max-margin: Class margin equilibrium for few-shot object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7363–7372).
Li, D., Sun, X., Elkhouchlaa, H., Jia, Y., Yao, Z., Lin, P., Li, J., & Lu, H. (2021). Fast detection and location of longan fruits using UAV images. Computers and Electronics in Agriculture, 190(106), 465.
Li, J. Y., Duce, S., Joyce, K. E., & Xiang, W. (2021). Seecucumbers: Using deep learning and drone imagery to detect sea cucumbers on coral reef flats. Drones, 5(2), 28.
Liang, W. C., Yang, Y. J., & Chao, C. M. (2019). Low-cost weed identification system using drones. In 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW) (pp. 260–263). IEEE.
Lin, Y., Chen, T., Liu, S., Cai, Y., Shi, H., Zheng, D., Lan, Y., Yue, X., & Zhang, L. (2022). Quick and accurate monitoring peanut seedlings emergence rate through UAV video and deep learning. Computers and Electronics in Agriculture, 197(106), 938.
Lin, Z., & Guo, W. (2021). Cotton stand counting from unmanned aerial system imagery using mobilenet and centernet deep learning models. Remote Sensing, 13(14), 2822.
Liu, C., Jian, Z., Xie, M., & Cheng, I. (2021). A real-time mobile application for cattle tracking using video captured from a drone. In 2021 International Symposium on Networks (pp. 1–6). IEEE: Computers and Communications (ISNCC).
Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: A review. Plant Methods, 17(1), 1–18.
Liu, J., Abbas, I., & Noor, R. S. (2021). Development of deep learning-based variable rate agrochemical spraying system for targeted weeds control in strawberry crop. Agronomy, 11(8), 1480.
Loey, M., ElSawy, A., & Afify, M. (2020). Deep learning in plant diseases detection for agricultural crops: A survey. International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 11(2), 41–58.
Maes, W. H., & Steppe, K. (2019). Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in plant science, 24(2), 152–164.
Mathew, A., Amudha, P., & Sivakumari, S. (2020). Deep learning techniques: An overview. In International Conference on Advanced Machine Learning Technologies and Applications (pp. 599–608). Springer
Meena, S. D., & Agilandeeswari, L. (2021). Smart animal detection and counting framework for monitoring livestock in an autonomous unmanned ground vehicle using restricted supervised learning and image fusion. Neural Processing Letters, 53(2), 1253–1285.
Menshchikov, A., Shadrin, D., Prutyanov, V., Lopatkin, D., Sosnin, S., Tsykunov, E., Iakovlev, E., & Somov, A. (2021). Real-time detection of hogweed: UAV platform empowered by deep learning. IEEE Transactions on Computers, 70(8), 1175–1188.
van der Merwe, D., Burchfield, D. R., Witt, T. D., Price, K. P., & Sharda, A. (2020). Drones in agriculture. In Advances in agronomy (Vo. 162, pp. 1–30).
Mirhaji, H., Soleymani, M., Asakereh, A., & Mehdizadeh, S. A. (2021). Fruit detection and load estimation of an orange orchard using the YOLO models through simple approaches in different imaging and illumination conditions. Computers and Electronics in Agriculture, 191(106), 533.
Moeinizade, S., Pham, H., Han, Y., Dobbels, A., & Hu, G. (2022). An applied deep learning approach for estimating soybean relative maturity from UAV imagery to aid plant breeding decisions. Machine Learning with Applications, 7(100), 233.
Mohidem, N. A., Che’Ya, N. N., Juraimi, A. S., Fazlil Ilahi, W. F., Mohd Roslim, M. H., Sulaiman, N., Saberioon, M., & Mohd Noor, N. (2021). How can unmanned aerial vehicles be used for detecting weeds in agricultural fields? Agriculture, 11(10), 1004.
Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision agriculture for crop and livestock farming-brief review. Animals, 11(8), 2345.
Nazir, S., & Kaleem, M. (2021). Advances in image acquisition and processing technologies transforming animal ecological studies. Ecological Informatics, 61(101), 212.
Nematzadeh, S., Kiani, F., Torkamanian-Afshar, M., & Aydin, N. (2022). Tuning hyperparameters of machine learning algorithms and deep neural networks using metaheuristics: A bioinformatics study on biomedical and biological cases. Computational Biology and Chemistry, 97(107), 619.
Nguyen, H. T., Lopez Caceres, M. L., Moritake, K., Kentsch, S., Shu, H., & Diez, Y. (2021). Individual sick fir tree (abies mariesii) identification in insect infested forests by means of UAV images and deep learning. Remote Sensing, 13(2), 260.
Ofori, M., El-Gayar, O. F. (2020). Towards deep learning for weed detection: Deep convolutional neural network architectures for plant seedling classification.
Osorio, K., Puerto, A., Pedraza, C., Jamaica, D., & Rodríguez, L. (2020). A deep learning approach for weed detection in lettuce crops using multispectral images. AgriEngineering, 2(3), 471–488.
Ouchra, H., & Belangour, A. (2021). Object detection approaches in images: A survey. In Thirteenth International Conference on Digital Image Processing (ICDIP 2021) (Vol. 11878, pp. 118780H). International Society for Optics and Photonics.
Pang, Y., Shi, Y., Gao, S., Jiang, F., Veeranampalayam-Sivakumar, A. N., Thompson, L., Luck, J., & Liu, C. (2020). Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery. Computers and Electronics in Agriculture, 178(105), 766.
Petso, T., Jamisola, R. S., Mpoeleng, D., & Mmereki, W. (2021) Individual animal and herd identification using custom YOLO v3 and v4 with images taken from a UAV camera at different altitudes. In 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP) (pp. 33–39). IEEE.
Petso, T., Jamisola, R. S., Jr., Mpoeleng, D., Bennitt, E., & Mmereki, W. (2021). Automatic animal identification from drone camera based on point pattern analysis of herd behaviour. Ecological Informatics, 66(101), 485.
Petso, T., Jamisola, R. S., & Mpoeleng, D. (2022). Review on methods used for wildlife species and individual identification. European Journal of Wildlife Research, 68(1), 1–18.
Ponnusamy, V., & Natarajan, S. (2021). Precision agriculture using advanced technology of iot, unmanned aerial vehicle, augmented reality, and machine learning. In Smart Sensors for Industrial Internet of Things (pp. 207–229). Springer.
Qian, W., Huang, Y., Liu, Q., Fan, W., Sun, Z., Dong, H., Wan, F., & Qiao, X. (2020). UAV and a deep convolutional neural network for monitoring invasive alien plants in the wild. Computers and Electronics in Agriculture, 174(105), 519.
Rachmawati, S., Putra, A. S., Priyatama, A., Parulian, D., Katarina, D., Habibie, M. T., Siahaan, M., Ningrum, E. P., Medikano, A., & Valentino, V. (2021). Application of drone technology for mapping and monitoring of corn agricultural land. In 2021 International Conference on ICT for Smart Society (ICISS) (pp. 1–5). IEEE.
Raheem, D., Dayoub, M., Birech, R., & Nakiyemba, A. (2021). The contribution of cereal grains to food security and sustainability in Africa: potential application of UAV in Ghana, Nigeria, Uganda, and Namibia. Urban Science, 5(1), 8.
Rahman, M. F. F., Fan, S., Zhang, Y., & Chen, L. (2021). A comparative study on application of unmanned aerial vehicle systems in agriculture. Agriculture, 11(1), 22.
Rangarajan, A. K., Balu, E. J., Boligala, M. S., Jagannath, A., & Ranganathan, B. N. (2022). A low-cost UAV for detection of Cercospora leaf spot in okra using deep convolutional neural network. Multimedia Tools and Applications, 81(15), 21,565–21,589.
Raoult, V., Colefax, A. P., Allan, B. M., Cagnazzi, D., Castelblanco-Martínez, N., Ierodiaconou, D., Johnston, D. W., Landeo-Yauri, S., Lyons, M., Pirotta, V., et al. (2020). Operational protocols for the use of drones in marine animal research. Drones, 4(4), 64.
Razfar, N., True, J., Bassiouny, R., Venkatesh, V., & Kashef, R. (2022). Weed detection in soybean crops using custom lightweight deep learning models. Journal of Agriculture and Food Research, 8(100), 308.
Rivas, A., Chamoso, P., González-Briones, A., & Corchado, J. M. (2018). Detection of cattle using drones and convolutional neural networks. Sensors, 18(7), 2048.
Roosjen, P. P., Kellenberger, B., Kooistra, L., Green, D. R., & Fahrentrapp, J. (2020). Deep learning for automated detection of Drosophila suzukii: Potential for UAV-based monitoring. Pest Management Science, 76(9), 2994–3002.
Roy, A. M., Bose, R., & Bhaduri, J. (2022). A fast accurate fine-grain object detection model based on YOLOv4 deep neural network. Neural Computing and Applications, 34(5), 3895–3921.
Safarijalal, B., Alborzi, Y., & Najafi, E. (2022). Automated wheat disease detection using a ROS-based autonomous guided UAV.
Safonova, A., Guirado, E., Maglinets, Y., Alcaraz-Segura, D., & Tabik, S. (2021). Olive tree biovolume from UAV multi-resolution image segmentation with mask R-CNN. Sensors, 21(5), 1617.
Saleem, M. H., Potgieter, J., & Arif, K. M. (2021). Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precision Agriculture, 22(6), 2053–2091.
dos Santos, A., Biesseck, B. J. G., Latte, N., de Lima Santos, I. C., dos Santos, W. P., Zanetti, R., & Zanuncio, J. C. (2022). Remote detection and measurement of leaf-cutting ant nests using deep learning and an unmanned aerial vehicle. Computers and Electronics in Agriculture, 198(107), 071.
dos Santos, Ferreira A., Freitas, D. M., da Silva, G. G., Pistori, H., & Folhes, M. T. (2017). Weed detection in soybean crops using convnets. Computers and Electronics in Agriculture, 143, 314–324.
Sarwar, F., Griffin, A., Periasamy, P., Portas, K., & Law, J. (2018). Detecting and counting sheep with a convolutional neural network. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1–6). IEEE.
Sarwar, F., Griffin, A., Rehman, S. U., & Pasang, T. (2021). Detecting sheep in UAV images. Computers and Electronics in Agriculture, 187(106), 219.
Shankar, R. H., Veeraraghavan, A., Sivaraman, K., Ramachandran, S. S., et al. (2018). Application of UAV for pest, weeds and disease detection using open computer vision. In 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 287–292). IEEE
Shao, W., Kawakami, R., Yoshihashi, R., You, S., Kawase, H., & Naemura, T. (2020). Cattle detection and counting in UAV images based on convolutional neural networks. International Journal of Remote Sensing, 41(1), 31–52.
Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2020). Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9, 4843–4873.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48.
Skendžić, S., Zovko, M., Živković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. Insects, 12(5), 440.
Soares, V., Ponti, M., Gonçalves, R., & Campello, R. (2021). Cattle counting in the wild with geolocated aerial images in large pasture areas. Computers and Electronics in Agriculture, 189(106), 354.
Stein, E. W. (2021). The transformative environmental effects large-scale indoor farming may have on air, water, and soil. Air, Soil and Water Research, 14(1178622121995), 819.
Stewart, E. L., Wiesner-Hanks, T., Kaczmar, N., DeChant, C., Wu, H., Lipson, H., Nelson, R. J., & Gore, M. A. (2019). Quantitative phenotyping of northern leaf blight in UAV images using deep learning. Remote Sensing, 11(19), 2209.
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73.
Tetila, E. C., Machado, B. B., Menezes, G. K., Oliveira, Ad. S., Alvarez, M., Amorim, W. P., Belete, N. A. D. S., Da Silva, G. G., & Pistori, H. (2019). Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 17(5), 903–907.
Tetila, E. C., Machado, B. B., Astolfi, G., de Souza Belete, N. A., Amorim, W. P., Roel, A. R., & Pistori, H. (2020). Detection and classification of soybean pests using deep learning with UAV images. Computers and Electronics in Agriculture, 179(105), 836.
Tiwari, A., Sachdeva, K., & Jain, N. (2021). Computer vision and deep learningbased framework for cattle monitoring. In 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical (pp. 1–6). IEEE: Electronics and Computer Engineering (UPCON).
Ukwuoma, C. C., Zhiguang, Q., Bin Heyat, M. B., Ali, L., Almaspoor, Z., & Monday, H. N. (2022). Recent advancements in fruit detection and classification using deep learning techniques. Mathematical Problems in Engineering.
Vayssade, J. A., Arquet, R., & Bonneau, M. (2019). Automatic activity tracking of goats using drone camera. Computers and Electronics in Agriculture, 162, 767–772.
Veeranampalayam Sivakumar, A. N., Li, J., Scott, S., Psota, E., Jhala, A., Luck, J. D., & Shi, Y. (2020). Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in UAV imagery. Remote Sensing, 12(13), 2136.
Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M., & Choi, J. G. (2021). Unmanned aerial vehicles (UAV) in precision agriculture: Applications and challenges. Energies, 15(1), 217.
Wani, J. A., Sharma, S., Muzamil, M., Ahmed, S., Sharma, S., & Singh, S. (2021). Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges. In Archives of Computational Methods in Engineering (pp. 1–37).
Wittstruck, L., Kühling, I., Trautz, D., Kohlbrecher, M., & Jarmer, T. (2020). UAV-based RGB imagery for hokkaido pumpkin (cucurbita max.) detection and yield estimation. Sensors, 21(1), 118.
Xie, W., Wei, S., Zheng, Z., Jiang, Y., & Yang, D. (2021). Recognition of defective carrots based on deep learning and transfer learning. Food and Bioprocess Technology, 14(7), 1361–1374.
Xiong, J., Liu, Z., Chen, S., Liu, B., Zheng, Z., Zhong, Z., Yang, Z., & Peng, H. (2020). Visual detection of green mangoes by an unmanned aerial vehicle in orchards based on a deep learning method. Biosystems Engineering, 194, 261–272.
Xiong, Y., Zeng, X., Chen, Y., Liao, J., Lai, W., & Zhu, M. (2022). An approach to detecting and mapping individual fruit trees integrated YOLOv5 with UAV remote sensing.
Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Chen, G., Tait, A., & Schneider, D. (2020). Automated cattle counting using mask R-CNN in quadcopter vision system. Computers and Electronics in Agriculture, 171(105), 300.
Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Sun, Z., & Li, C. (2020). Livestock classification and counting in quadcopter aerial images using mask R-CNN. International Journal of Remote Sensing, 41(21), 8121–8142.
Yang, Q., Shi, L., Han, J., Yu, J., & Huang, K. (2020). A near real-time deep learning approach for detecting rice phenology based on UAV images. Agricultural and Forest Meteorology, 287(107), 938.
Yang, S., Yang, X., & Mo, J. (2018). The application of unmanned aircraft systems to plant protection in china. Precision Agriculture, 19(2), 278–292.
Zhang, H., Lin, P., He, J., & Chen, Y. (2020) Accurate strawberry plant detection system based on low-altitude remote sensing and deep learning technologies. In 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 1–5). IEEE.
Zhang, H., Wang, L., Tian, T., & Yin, J. (2021). A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in china. Remote Sensing, 13(6), 1221.
Zhang, R., Wang, C., Hu, X., Liu, Y., Chen, S., et al. (2020) Weed location and recognition based on UAV imaging and deep learning. International Journal of Precision Agricultural Aviation, 3(1).
Zhang, X., Han, L., Dong, Y., Shi, Y., Huang, W., Han, L., González-Moreno, P., Ma, H., Ye, H., & Sobeih, T. (2019). A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remote Sensing, 11(13), 1554.
Zhou, X., Lee, W. S., Ampatzidis, Y., Chen, Y., Peres, N., & Fraisse, C. (2021). Strawberry Maturity Classification from UAV and Near-Ground Imaging Using Deep Learning. Smart Agricultural Technology, 1(100), 001.
Acknowledgements
Not applicable.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Petso, T., Jamisola, R.S. (2023). A Review on Deep Learning on UAV Monitoring Systems for Agricultural Applications. In: Azar, A.T., Koubaa, A. (eds) Artificial Intelligence for Robotics and Autonomous Systems Applications. Studies in Computational Intelligence, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-031-28715-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-28715-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28714-5
Online ISBN: 978-3-031-28715-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)