Abstract
This paper presents the design of a water source monitoring system based on LoRa technology for the Tres Lagunas Andean high-altitude wetlands ecosystem (Ecuador). The solution has been implemented using mainly an ATmega1284p microcontroller, an SX1278 transceiver and hydrological sensors. The data is transmitted from the study site to the TTN server and sent via the MQTT protocol to the Node-RED platform. On the other hand, a graphical interface has been developed that allows analyzing historical data of temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP) and hydrogen potential (pH). Furthermore, energy consumption tests and LoRa physical layer experiments have been performed with the prototype. Results reveal the proper operation of the prototype. In particular, it has been observed that SF9 and SF10 present packet reception rates higher than 97%. Regarding SF7 and SF8, they was discarded for this type of scenarios due to the packet loss rate higher than 10%. The main contribution of this work is the proposal of a portable, low-cost and open source prototype, focused on the transmission of hydrological data obtained in Andean high-altitude lakes through IoT technologies for the administration, management and control of water resources that represent a fundamental component of a smart city.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bellini, P., Nesi, P., Pantaleo, G.: IoT-enabled smart cities: a review of concepts, frameworks and key technologies. Appl. Sci. 12(3), 1607 (2022)
Li, C., Su, Y., Yuan, R., Chu, D., Zhu, J.: Light-weight spliced convolution network-based automatic water meter reading in smart city. IEEE Access 7, 174359–174367 (2019)
Li, X.J., Chong, P.H.J.: Design and implementation of a self-powered smart water meter. Sensors 19(19), 4177 (2019)
Ramírez-Moreno, M.A., et al.: Sensors for sustainable smart cities: a review. Appl. Sci. 11(17), 8198 (2021)
León Ortiz, P.: Influencia del calentamiento global en los ecosistemas terrestres del perú (2021)
Castro, M.: Proyecto “creación de capacidades para la valoración socioeconómica de los humedales altoandinos”: Una valoración económica del almacenamiento de agua y carbono en los bofedales de los páramos ecuatorianos (2011)
Briceño Salas, J.P.: Percepción de los cambios ambientales en los humedales de Oña-Saraguro. Ph.D. thesis, Universidad Técnica Particular De Loja (2014)
Ahmed, U., Mumtaz, R., Anwar, H., Shah, A.A., Irfan, R., García-Nieto, J.: Efficient water quality prediction using supervised machine learning. Water 11(11), 2210 (2019)
Mao, F., et al.: Moving beyond the technology: a socio-technical roadmap for low-cost water sensor network applications. Environ. Sci. Technol. 54(15), 9145–9158 (2020)
Pieters, O., et al.: MIRRA: a modular and cost-effective microclimate monitoring system for real-time remote applications. Sensors 21(13), 4615 (2021)
Wild, J., et al.: Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric. Forest Meteorol. 268, 40–47 (2019)
Méndez-Barroso, L.A., Rivas-Márquez, J.A., Sosa-Tinoco, I., Robles-Morúa, A.: Design and implementation of a low-cost multiparameter probe to evaluate the temporal variations of water quality conditions on an estuarine lagoon system. Environ. Monit. Assess. 192(11), 1–18 (2020). https://doi.org/10.1007/s10661-020-08677-5
Menon, G.S., Ramesh, M.V., Divya, P.: A low cost wireless sensor network for water quality monitoring in natural water bodies. In: 2017 IEEE Global Humanitarian Technology Conference (GHTC), pp. 1–8. IEEE (2017)
Moya Quimbita, M.A.: Evaluación de pasarela lora/lorawan en entornos urbanos (2018)
Kimothi, S., et al.: Intelligent energy and ecosystem for real-time monitoring of glaciers. Comput. Electric. Eng. 102, 108163 (2022)
Kombo, O.H., Kumaran, S., Bovim, A.: Design and application of a low-cost, low-power, LoRa-GSM, IoT enabled system for monitoring of groundwater resources with energy harvesting integration. IEEE Access 9, 128417–128433 (2021)
Bathre, M., Das, P.K.: Water supply monitoring system with self-powered LoRa based wireless sensor system powered by solar and hydroelectric energy harvester. Comput. Stand. Interf. 82, 103630 (2022)
Bor, M., Roedig, U.: Lora transmission parameter selection. In: 2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 27–34. IEEE (2017)
Ko, S., et al.: Lora network performance comparison between open area and tree farm based on PHY factors. In: 2018 IEEE Sensors Applications Symposium (SAS), pp. 1–6. IEEE (2018)
Cattani, M., Boano, C.A., Römer, K.: An experimental evaluation of the reliability of LoRa long-range low-power wireless communication. J. Sens. Actuator Netw. 6(2), 7 (2017)
Lopez Chalacan, V.H.: Performance evaluation of long range (LoRa) wireless Rf technology for the internet of things (IoT) using Dragino LoRa at 915 Mhz (2020)
Iova, O., et al.: Lora from the city to the mountains: exploration of hardware and environmental factors. In: Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks (2017)
Zhang, Z., Zhang, B., Zhang, X.: Performance research of LoRa at high transmission rate. In: Journal of Physics: Conference Series, vol. 1544, p. 012177. IOP Publishing (2020)
Microchip: ATmega1284P. http://www.microchip.com/en-us/product/ATmega1284P. Accessed 18 Jun 2022
Atlas-Scientific: Gravity\(^{\rm TM}\) pH. http://www.atlas-scientific.com/kits/gravity-analog-ph-kit/. Accessed 10 Sept 2022
Atlas-Scientific: Gravity\(^{\rm TM}\) DO Sensor. http://www.atlas-scientific.com/kits/gravity-analog-do-kit/. Accessed 10 Sept 2022
Atlas-Scientific: Gravity\(^{\rm TM}\) ORP Sensor. http://www.atlas-scientific.com/kits/gravity-analog-orp-kit/. Accessed 10 Sept 2022
Atlas-Scientific: Gravity Analog Sensor/Meter Sample Code. http://www.files.atlas-scientific.com/atlas_gravity.zip. Accessed 10 Sep 2022
Ai-Thinker: Módulo LoRa SX1278 433 Mhz. http://www.docs.ai-thinker.com/en/lora/man. Accessed 10 Sept 2022
Github: User-friendly library for using arduino-lmic with The Things Network and other LoRaWAN® networks. http://www.github.com/mcci-catena/arduino-lorawan. Accessed 18 Sept 2022
Arduino IDE. http://www.arduino.cc/en/software. Accessed 10 Sept 2022
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
González, L., Gonzales, A., González, S., Cartuche, A. (2023). Application of LPWAN Technologies Based on LoRa in the Monitoring of Water Sources of The Andean Wetlands. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-CITIES 2022. Communications in Computer and Information Science, vol 1706. Springer, Cham. https://doi.org/10.1007/978-3-031-28454-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-28454-0_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28453-3
Online ISBN: 978-3-031-28454-0
eBook Packages: Computer ScienceComputer Science (R0)