Nothing Special   »   [go: up one dir, main page]

Skip to main content

DHP: A Joint Video Download and Dynamic Bitrate Adaptation Algorithm for Short Video Streaming

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13834))

Included in the following conference series:

  • 1656 Accesses

Abstract

With the development of multimedia technology and the upgrading of mobile terminal equipment, short video platforms and applications are becoming more and more popular. Compared with traditional long video, short video users tend to slide from current viewing video more frequently. Unviewed preloaded video chunks cause a large amount of bandwidth waste and do not contribute to improving the user QoE. Since bandwidth savings conflict with user QoE improvements, it is very challenging to satisfy both. To solve this problem, this paper proposes DHP, a joint video download and dynamic bitrate adaptation algorithm for short video streaming. DHP makes the chunk download decision based on the maximum buffer model and retention rate, and makes the dynamic bitrate adaptation decision according to past bandwidth and buffer size. Experimental results show that DHP can reduce the bandwidth waste by at most 66.74% and improve the QoE by at most 42.5% compared to existing solutions under various network conditions.

W. Gao and L. Zhang—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandre, D., Hang, H.-M., Peng, W.-H., Domański, M.: Deep video compression for interframe coding. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2124–2128 (2021)

    Google Scholar 

  2. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An introduction to deep reinforcement learning. Found. Trends® Mach. Learn. 11(3–4), 219–354 (2018)

    Google Scholar 

  3. Hayamizu, Y., Goto, K., Bandai, M., Yamamoto, M.: QOE-aware bitrate selection in cooperation with in-network caching for information-centric networking. IEEE Access 9, 165059–165071 (2021)

    Article  Google Scholar 

  4. Huang, T.-Y., Johari, R., McKeown, N., Trunnell, M., Watson, M.: A buffer-based approach to rate adaptation: evidence from a large video streaming service. In: Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM 2014, pp. 187–198, New York, NY, USA, 2014. Association for Computing Machinery (2014)

    Google Scholar 

  5. Huang, T., Zhou, C., Zhang, R.-X., Wu, C., Yao, X., Sun, L.: Comyco: quality-aware adaptive video streaming via imitation learning. In: Proceedings of the 27th ACM International Conference on Multimedia, MM 2019, pp. 429–437, New York, NY, USA, 2019. Association for Computing Machinery (2019)

    Google Scholar 

  6. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive. In: Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, CoNEXT 2012, pp. 97–108, New York, NY, USA, 2012. Association for Computing Machinery (2012)

    Google Scholar 

  7. Kong, D., et al.: A novel fanless energy efficient edge computing system architecture and engineering practice for Baidu PCDN application. In: 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 1–7 (2019)

    Google Scholar 

  8. Lekharu, A., Moulii, K.Y., Sur, A., Sarkar, A.: Deep learning based prediction model for adaptive video streaming. In: 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), pp. 152–159 (2020)

    Google Scholar 

  9. Li, W., Huang, J., Wang, S., Liu, S., Wang, J.: DAVS: dynamic-chunk quality aware adaptive video streaming using apprenticeship learning. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6. IEEE Press (2020)

    Google Scholar 

  10. Zuo, X., Shu, L.: Short-video-streaming-challenge (2022). https://github.com/AItransCompetition/Short-Video-Streaming-Challenge

  11. Lv, G., Wu, Q., Wang, W., Li, Z., Xie, G.: Lumos: towards better video streaming QOE through accurate throughput prediction. In: IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, pp. 650–659 (2022)

    Google Scholar 

  12. Mao, H., Netravali, R., Alizadeh, M.: Neural adaptive video streaming with Pensieve. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, SIGCOMM 2017, pp. 197–210, New York, NY, USA, 2017. Association for Computing Machinery (2017)

    Google Scholar 

  13. Qiao, C., Wang, J., Liu, Y.: Beyond QOE: diversity adaptation in video streaming at the edge. IEEE/ACM Trans. Networking 29(1), 289–302 (2021)

    Article  Google Scholar 

  14. Saleem, M., Saleem, Y., Asif, H.M.S., Mian, M.S.: Quality enhanced multimedia content delivery for mobile cloud with deep reinforcement learning. Wirel. Commun. Mob. Comput. 2019, 5038758:1–5038758:15 (2019)

    Google Scholar 

  15. Spiteri, K., Urgaonkar, R., Sitaraman, R.K.: BOLA: near-optimal bitrate adaptation for online videos. In: IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9 (2016)

    Google Scholar 

  16. Yin, X., Jindal, A., Sekar, V., Sinopoli, B.: A control-theoretic approach for dynamic adaptive video streaming over http. In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM 2015, pp. 325–338, New York, NY, USA, 2015. Association for Computing Machinery (2015)

    Google Scholar 

  17. Zhang, G., Lee, J.Y.B.: Ensemble adaptive streaming - a new paradigm to generate streaming algorithms via specializations. IEEE Trans. Mob. Comput. 19(6), 1346–1358 (2020)

    Article  Google Scholar 

  18. Zhou, C., Zhong, S., Geng, Y., Yu, B.: A statistical-based rate adaptation approach for short video service. In: 2018 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2018)

    Google Scholar 

  19. Zuo, X., et al.: Bandwidth-efficient multi-video prefetching for short video streaming. arXiv preprint arXiv:2206.09839 (2022)

Download references

Acknowledgements

This work was supported by the National Key R &D Program of China (Grant No. 2019YFB1804303), the National Natural Science Foundation of China (Grant No. 61971382) and the Fundamental Research Funds for the Central Universities (CUC22GZ067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, W., Zhang, L., Yang, H., Zhang, Y., Yan, J., Lin, T. (2023). DHP: A Joint Video Download and Dynamic Bitrate Adaptation Algorithm for Short Video Streaming. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27818-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27817-4

  • Online ISBN: 978-3-031-27818-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics