Nothing Special   »   [go: up one dir, main page]

Skip to main content

DARTS-PAP: Differentiable Neural Architecture Search by Polarization of Instance Complexity Weighted Architecture Parameters

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Abstract

Neural architecture search has attracted much attention because it can automatically find architectures with high performance. In recent years, differentiable architecture search emerges as one of the main techniques for automatic network design. However, related methods suffer from performance collapse due to excessive skip-connect operations and discretization gaps in search and evaluation. To relieve performance collapse, we propose a polarization regularizer on instance-complexity weighted architecture parameters to push the probability of the most important operation in each edge to 1 while the probabilities of other operations to 0. The polarization regularizer effectively removes the discretization gaps between the search and evaluation procedures, and instance-complexity aware learning of the architecture parameters gives higher weights to hard inputs therefore further improves the network performance. Similar to existing methods, the search process is conducted under a differentiable way. Extensive experiments on a variety of search spaces and datasets show our method can well polarize the architecture parameters and greatly reduce the number of skip-connect operations, which contributes to the performance elevation of network search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, H., Zhu, L., Han, S.: Proxylessnas: direct neural architecture search on target task and hardware. arXiv preprint arXiv:1812.00332 (2018)

  2. Chen, X., Xie, L., Wu, J., Tian, Q.: Progressive differentiable architecture search: bridging the depth gap between search and evaluation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1294–1303 (2019)

    Google Scholar 

  3. Chu, X., Wang, X., Zhang, B., Lu, S., Wei, X., Yan, J.: Darts-: robustly stepping out of performance collapse without indicators. arXiv preprint arXiv:2009.01027 (2020)

  4. Chu, X., Zhang, B.: Noisy differentiable architecture search. arXiv preprint arXiv:2005.03566 (2020)

  5. Chu, X., Zhou, T., Zhang, B., Li, J.: Fair DARTS: eliminating unfair advantages in differentiable architecture search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 465–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_28

    Chapter  Google Scholar 

  6. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, X., Yang, Y.: One-shot neural architecture search via self-evaluated template network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3681–3690 (2019)

    Google Scholar 

  8. Dong, X., Yang, Y.: Searching for a robust neural architecture in four GPU hours. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1761–1770 (2019)

    Google Scholar 

  9. Dong, X., Yang, Y.: Nas-bench-201: extending the scope of reproducible neural architecture search. arXiv preprint arXiv:2001.00326 (2020)

  10. Elkerdawy, S., Elhoushi, M., Zhang, H., Ray, N.: Fire together wire together: a dynamic pruning approach with self-supervised mask prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12454–12463 (2022)

    Google Scholar 

  11. He, Z., Rakin, A.S., Fan, D.: Parametric noise injection: trainable randomness to improve deep neural network robustness against adversarial attack. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 588–597 (2019)

    Google Scholar 

  12. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  13. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.P.: Neural architecture search with bayesian optimisation and optimal transport. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  14. Li, G., Qian, G., Delgadillo, I.C., Muller, M., Thabet, A., Ghanem, B.: Sgas: sequential greedy architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1620–1630 (2020)

    Google Scholar 

  15. Li, Y., Adamczewski, K., Li, W., Gu, S., Timofte, R., Van Gool, L.: Revisiting random channel pruning for neural network compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 191–201 (2022)

    Google Scholar 

  16. Liang, H., Zhang, S., Sun, J., He, X., Huang, W., Zhuang, K., Li, Z.: Darts+: improved differentiable architecture search with early stopping. arXiv preprint arXiv:1909.06035 (2019)

  17. Liu, C., et al.: Progressive neural architecture search. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 19–34 (2018)

    Google Scholar 

  18. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  19. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

  20. Negrinho, R., Gordon, G.: Deeparchitect: automatically designing and training deep architectures. arXiv preprint arXiv:1704.08792 (2017)

  21. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

    Google Scholar 

  22. Tan, M., et al.: Mnasnet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

    Google Scholar 

  23. Tang, Y., et al.: Manifold regularized dynamic network pruning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5018–5028 (2021)

    Google Scholar 

  24. Wang, R., Cheng, M., Chen, X., Tang, X., Hsieh, C.J.: Rethinking architecture selection in differentiable nas. arXiv preprint arXiv:2108.04392 (2021)

  25. Xie, S., Zheng, H., Liu, C., Lin, L.: Snas: stochastic neural architecture search. arXiv preprint arXiv:1812.09926 (2018)

  26. Yao, Q., Xu, J., Tu, W.W., Zhu, Z.: Efficient neural architecture search via proximal iterations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6664–6671 (2020)

    Google Scholar 

  27. Ye, P., Li, B., Li, Y., Chen, T., Fan, J., Ouyang, W.: \( \beta \)-darts: Beta-decay regularization for differentiable architecture search. arXiv preprint arXiv:2203.01665 (2022)

  28. Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., Hutter, F.: Understanding and robustifying differentiable architecture search. arXiv preprint arXiv:1909.09656 (2019)

  29. Zhou, H., Yang, M., Wang, J., Pan, W.: Bayesnas: a bayesian approach for neural architecture search. In: International Conference on Machine Learning, pp. 7603–7613. PMLR (2019)

    Google Scholar 

  30. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the National Natural Science Foundation of China (61901238), West Light Foundation of The Chinese Academy of Sciences (XAB2019AW12) and Key Research and Development Program of Ningxia (2021BEB04065, 2021BEE03013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Li, S., Yu, Z. (2023). DARTS-PAP: Differentiable Neural Architecture Search by Polarization of Instance Complexity Weighted Architecture Parameters. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27818-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27817-4

  • Online ISBN: 978-3-031-27818-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics