Nothing Special   »   [go: up one dir, main page]

Skip to main content

CCF-Net: A Cascade Center-Based Framework Towards Efficient Human Parts Detection

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13834))

Included in the following conference series:

  • 1556 Accesses

Abstract

Human parts detection has made remarkable progress due to the development of deep convolutional networks. However, many SOTA detection methods require large computational cost and are still difficult to be deployed to edge devices with limited computing resources. In this paper, we propose a lightweight Cascade Center-based Framework, called CCF-Net, for human parts detection. Firstly, a Gaussian-Induced penalty strategy is designed to ensure that the network can handle objects of various scales. Then, we use Cascade Attention Module to capture relations between different feature maps, which refines intermediate features. With our novel cross-dataset training strategy, our framework fully explores the datasets with incomplete annotations and achieves better performance. Furthermore, Center-based Knowledge Distillation is proposed to enable student models to learn better representation without additional cost. Experiments show that our method achieves a new SOTA performance on Human-Parts and COCO Human Parts benchmarks(The Datasets used in this paper were downloaded and experimented on by Kai Ye from Shenzhen University.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bochkovskiy, A., et al.: Yolov4: optimal speed and accuracy of object detection. arXiv (2020)

    Google Scholar 

  2. Dai, J., et al.: R-FCN: Object detection via region-based fully convolutional networks. In: NIPS (2016)

    Google Scholar 

  3. Guo, J., et al.: Distilling object detectors via decoupled features. In: CVPR (2021)

    Google Scholar 

  4. He, K., et al.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  5. Hinton, G., et al.: Distilling the knowledge in a neural network. arXiv (2015)

    Google Scholar 

  6. Howard, A., et al.: Searching for mobilenetv3. In: ICCV (2019)

    Google Scholar 

  7. Kim, K., et al.: Probabilistic anchor assignment with IoT prediction for object detection. In: ECCV (2020)

    Google Scholar 

  8. Kong, T., et al.: Foveabox: Beyound anchor-based object detection. IEEE Trans. Image Process. (99):1-1 (2020)

    Google Scholar 

  9. Li, X., et al.: Detector-in-detector: multi-level analysis for human-parts. In: ACCV (2018)

    Google Scholar 

  10. Lin, T.Y., et al.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  11. Lin, T.Y., et al.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  12. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  13. Redmon, J., et al.: You only look once: Unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  14. Redmon, J., et al.: Yolov3: An incremental improvement. arXiv (2018)

    Google Scholar 

  15. Ren, et al.: Faster r-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  16. Rezatofighi, H., et al.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR (2019)

    Google Scholar 

  17. Tian, Z., et al.: Fcos: fully convolutional one-stage object detection. In: ICCV (2019)

    Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  19. Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature imitation. In: CVPR (2019)

    Google Scholar 

  20. Yang, L., et al.: HIER R-CNN: instance-level human parts detection and a new benchmark. Trans. I. Process 30, 39–54 (2020)

    Google Scholar 

  21. Yang, S., et al.: Wider face: A face detection benchmark. In: CVPR (2016)

    Google Scholar 

  22. Yang, Z., et al.: Reppoints: point set representation for object detection. In: ICCV (2019)

    Google Scholar 

  23. Yao, Y., et al.: Cross-dataset training for class increasing object detection. arXiv (2020)

    Google Scholar 

  24. Zhang, L., et al.: Improve object detection with feature-based knowledge distillation: towards accurate and efficient detectors. In: ICLR (2020)

    Google Scholar 

  25. Zhang, S., et al.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: CVPR (2020)

    Google Scholar 

  26. Zhang, S., et al.: Distribution alignment: A unified framework for long-tail visual recognition. In: CVPR (2021)

    Google Scholar 

  27. Zhixing, D., et al.: Distilling object detectors with feature richness. In: NIPS (2021)

    Google Scholar 

  28. Zhou, X., et al.: Objects as points. arXiv (2019)

    Google Scholar 

  29. Zhu, B., et al.: Autoassign: Differentiable label assignment for dense object detection. arXiv (2020)

    Google Scholar 

  30. Zhu, C., et al.: Feature selective anchor-free module for single-shot object detection. In: CVPR (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 91959108, and Shenzhen Municipal Science and Technology Innovation Council under Grant JCYJ20220531101412030. We thank Qualcomm Incorporated to support us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, K., Ji, H., Li, Y., Wang, L., Liu, P., Shen, L. (2023). CCF-Net: A Cascade Center-Based Framework Towards Efficient Human Parts Detection. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27818-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27817-4

  • Online ISBN: 978-3-031-27818-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics