Abstract
Recently, it has been demonstrated that a solution set that is better than the final population can be obtained by subset selection in some studies on evolutionary multi-objective optimization. The main challenge in this type of subset selection is how to efficiently handle a huge candidate solution set, especially when the hypervolume-based subset selection is used for many-objective optimization. In this paper, we propose an efficient two-stage greedy algorithm for hypervolume-based subset selection. In each iteration of the proposed greedy algorithm, a small number of promising candidate solutions are selected in the first stage using the rough hypervolume contribution approximation. In the second stage, a single solution among them is selected using the more precise approximation. Experimental results show that the proposed algorithm is much faster than state-of-the-art hypervolume-based greedy subset selection algorithms at the cost of a slight deterioration of the selected subset quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ishibuchi, H., Pang, L.M., Shang, K.: A new framework of evolutionary multi-objective algorithms with an unbounded external archive. In: Proceedings of the European Conference on Artificial Intelligence, Santiago de Compostela, Spain, pp. 283–290 (2020)
Fieldsend, J.E., Everson, R.M., Singh, S.: Using unconstrained elite archives for multiobjective optimization. IEEE Trans. Evol. Comput. 7(3), 305–323 (2003)
Schütze, O., Coello Coello, C.A., Mostaghim, S., Talbi, E.-G., Dellnitz, M.: Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems. J. Eng. Optim. 40(5), 383–402 (2008)
Brockhoff, D., Tran, T.-D., Hansen, N.: Benchmarking numerical multiobjective optimizers revisited. In: Proceedings of the Conference on Genetic and Evolutionary Computation, Madrid Spain, pp. 639–646 (2015)
Tanabe, R., Ishibuchi, H., Oyama, A.: Benchmarking multi- and many-objective evolutionary algorithms under two optimization scenarios. IEEE Access 5, 19597–19619 (2017)
Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: How to compare many-objective algorithms under different settings of population and archive sizes. In: Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, pp. 1149–1156 (2016)
Ishibuchi, H., Pang, L.M., Shang, K.: Difficulties in fair performance comparison of multi-objective evolutionary algorithms. IEEE Comput. Intell. Mag. 17(1), 86–101 (2022)
Bringmann, K., Friedrich, T., Klitzke, P.: Generic postprocessing via subset selection for hypervolume and epsilon-indicator. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 518–527. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_51
Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Archiver effects on the performance of state-of-the-art multi- and many-objective evolutionary algorithms. In: Proceedings of the Conference on Genetic and Evolutionary Computation, Prague Czech Republic, pp. 620–628 (2019)
Li, M., Yao, X.: An empirical investigation of the optimality and monotonicity properties of multiobjective archiving methods. In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 15–26. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_2
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Shang, K., Ishibuchi, H., He, L., Pang, L.M.: A survey on the hypervolume indicator in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 25(1), 1–20 (2021)
Bradstreet, L., Barone, L., While, L.: Maximising hypervolume for selection in multi-objective evolutionary algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, pp. 1744–1751 (2006)
Bradstreet, L., While, L., Barone, L.: Incrementally maximising hypervolume for selection in multi-objective evolutionary algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, Singapore, pp. 3203–3210 (2007)
Jiang, S., Zhang, J., Ong, Y., Zhang, A.N., Tan, P.S.: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 45(10), 2202–2213 (2015)
Chen, W., Ishibuchi, H., Shang, K.: Fast greedy subset selection from large candidate solution sets in evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 26(4), 750–764 (2022)
Shang, K., Ishibuchi, H., Chen, W.: Greedy approximated hypervolume subset selection for many-objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, Lille, France, pp. 448–456 (2021)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)
Ulrich, T., Thiele, L.: Bounding the effectiveness of hypervolume-based (\(\mu +\lambda \))-archiving algorithms. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 235–249. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_17
Shang, K., Ishibuchi, H., Ni, X.: R2-based hypervolume contribution approximation. IEEE Trans. Evol. Comput. 24(1), 185–192 (2020)
Nan, Y., Shang, K., Ishibuchi, H., He, L.: Improving local search hypervolume subset selection in evolutionary multi-objective optimization. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Melbourne, Australia, pp. 751–757 (2021)
Nan, Y., Shang, K., Ishibuchi, H., He, L.: A two-stage hypervolume contribution approximation method based on R2 indicator. In: Proceedings of the IEEE Congress on Evolutionary Computation, Kraków, Poland, pp. 2468–2475 (2021)
Shang, K., Shu, T., Ishibuchi, H., Nan, Y., Pang, L.M.: Benchmarking subset selection from large candidate solution sets in evolutionary multi-objective optimization. arXiv:2201.06700
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. AI &KP, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6
Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)
Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: How to specify a reference point in hypervolume calculation for fair performance comparison. Evol. Comput. 26(3), 411–440 (2018)
Nan, Y., Shang, K., Ishibuchi, H.: What is a good direction vector set for the R2-based hypervolume contribution approximation. In: Proceedings of the Conference on Genetic and Evolutionary Computation, Lisbon, Portugal, pp. 524–532 (2020)
Deng, J., Zhang, Q.: Approximating hypervolume and hypervolume contributions using polar coordinate. IEEE Trans. Evol. Comput. 23(5), 913–918 (2019)
Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant No. 62002152, 61876075), Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386), The Stable Support Plan Program of Shenzhen Natural Science Fund (Grant No. 20200925174447003), Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nan, Y., Ishibuchi, H., Shu, T., Shang, K. (2023). Two-Stage Greedy Approximated Hypervolume Subset Selection for Large-Scale Problems. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-27250-9_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27249-3
Online ISBN: 978-3-031-27250-9
eBook Packages: Computer ScienceComputer Science (R0)