Nothing Special   »   [go: up one dir, main page]

Skip to main content

Peak-A-Boo! Generating Multi-objective Multiple Peaks Benchmark Problems with Precise Pareto Sets

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2023)

Abstract

The design and choice of benchmark suites are ongoing topics of discussion in the multi-objective optimization community. Some suites provide a good understanding of their Pareto sets and fronts, such as the well-known DTLZ and ZDT problems. However, they lack diversity in their landscape properties and do not provide a mechanism for creating multiple distinct problem instances. Other suites, like bi-objective BBOB, possess diverse and challenging landscape properties, but their optima are not well understood and can only be approximated empirically without any guarantees.

This work proposes a methodology for creating complex continuous problem landscapes by concatenating single-objective functions from version 2 of the multiple peaks model (MPM2) generator. For the resulting problems, we can determine the distribution of optimal points with arbitrary precision w.r.t. a measure such as the dominated hypervolume. We show how the properties of the MPM2 generator influence the multi-objective problem landscapes and present an experimental proof-of-concept study demonstrating how our approach can drive well-founded benchmarking of MO algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartz-Beielstein, T., et al.: Benchmarking in Optimization: Best Practice and Open Issues (2020). https://doi.org/10.48550/arxiv.2007.03488

  2. Blot, A., Hoos, H.H., Jourdan, L., Kessaci-Marmion, M.É., Trautmann, H.: MO-ParamILS: a multi-objective automatic algorithm configuration framework. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 32–47. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_3

    Chapter  Google Scholar 

  3. Bossek, J.: ECR 2.0: a modular framework for evolutionary computation in R. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1187–1193 (2017)

    Google Scholar 

  4. Bossek, J.: smoof: single- and multi-objective optimization test functions. R J. 9(1), 103 (2017)

    Article  Google Scholar 

  5. Bossek, J., Deb, K.: omnioptr: omni-optimizer algorithm (2021). https://github.com/jakobbossek/omnioptr

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. (TEVC) 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  8. Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. Eur. J. Oper. Res. (EJOR) 185, 1062–1087 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_5

    Chapter  MATH  Google Scholar 

  11. Glasmachers, T.: Challenges of convex quadratic bi-objective benchmark problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 559–567 (2019)

    Google Scholar 

  12. Grimme, C., et al.: Peeking beyond peaks: challenges and research potentials of continuous multimodal multi-objective optimization. Comput. Oper. Res. 136, 105489 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Technical report, RR-6829, INRIA (2009)

    Google Scholar 

  14. Heins, J., Rook, J., Schäpermeier, L., Kerschke, P., Bossek, J., Trautmann, H.: BBE: basin-based evaluation of multimodal multi-objective optimization problems. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) Parallel Problem Solving from Nature, pp. 192–206. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14714-2_14

    Chapter  Google Scholar 

  15. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9_3

    Chapter  Google Scholar 

  16. Kerschke, P., et al.: Search dynamics on multimodal multiobjective problems. Evol. Comput. 27(4), 577–609 (2019)

    Article  Google Scholar 

  17. Mersmann, O., Trautmann, H., Steuer, D., Bischl, B., Deb, K.: MCO: multiple criteria optimization algorithms and related functions, R package, version 1.0-15.6 (2020). https://github.com/olafmersmann/mco

  18. Rook, J., Trautmann, H., Bossek, J., Grimme, C.: On the potential of automated algorithm configuration on multi-modal multi-objective optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 356–359. ACM, New York (2022)

    Google Scholar 

  19. Schäpermeier, L., Grimme, C., Kerschke, P.: One PLOT to show them all: visualization of efficient sets in multi-objective landscapes. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 154–167. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_11

    Chapter  Google Scholar 

  20. Schäpermeier, L., Grimme, C., Kerschke, P.: To boldly show what no one has seen before: a dashboard for visualizing multi-objective landscapes. In: Ishibuchi, H., et al. (eds.) EMO 2021. LNCS, vol. 12654, pp. 632–644. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72062-9_50

    Chapter  Google Scholar 

  21. Schäpermeier, L., Grimme, C., Kerschke, P.: MOLE: digging tunnels through multimodal multi-objective landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 592–600. ACM (2022)

    Google Scholar 

  22. Schäpermeier, L., Grimme, C., Kerschke, P.: Plotting impossible? Surveying visualization methods for continuous multi-objective benchmark problems. IEEE Trans. Evol. Comput. 26(6), 1306–1320 (2022)

    Article  Google Scholar 

  23. Tanabe, R., Ishibuchi, H.: A review of evolutionary multi-modal multi-objective optimization. IEEE Trans. Evol. Comput. (TEVC) 24(1), 193–200 (2020)

    Article  Google Scholar 

  24. Toure, C., Auger, A., Brockhoff, D., Hansen, N.: On bi-objective convex-quadratic problems. In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 3–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_1

    Chapter  Google Scholar 

  25. Tušar, T., Brockhoff, D., Hansen, N., Auger, A.: COCO: The Bi-Objective Black Box Optimization Benchmarking (bbob-biobj) Test Suite. arXiv preprint abs/1604.00359 (2016)

    Google Scholar 

  26. Wessing, S.: The multiple peaks model 2. Technical report, TR15-2-001, TU Dortmund University, Germany (2015)

    Google Scholar 

  27. Wessing, S.: Two-stage methods for multimodal optimization. Ph.D. thesis, University of Dortmund (2015). https://doi.org/10.17877/DE290R-7804

  28. Yue, C., Qu, B., Yu, K., Liang, J., Li, X.: A novel scalable test problem suite for multimodal multiobjective optimization. Swarm Evol. Comput. 48, 62–71 (2019)

    Article  Google Scholar 

  29. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. (ECJ) 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge support by the European ResearchCenter for Information Systems (ERCIS). Further, L. Schäpermeier and P. Kerschke acknowledge support by the Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Schäpermeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schäpermeier, L., Kerschke, P., Grimme, C., Trautmann, H. (2023). Peak-A-Boo! Generating Multi-objective Multiple Peaks Benchmark Problems with Precise Pareto Sets. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27250-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27249-3

  • Online ISBN: 978-3-031-27250-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics