Abstract
For an efficient upconvert of the Pareto front resolution by utilizing a known candidate solution set, this paper proposed an algorithm that built the Pareto front and the Pareto set estimation models and repeated to sample a solution from them, evaluate it, and updated the estimation models with it. Conventional supervised multi-objective optimization algorithm (SMOA) built the Pareto front and the Pareto set estimation models with a known candidate solution set. SMOA sampled a set of well-distributed estimated points and evaluated them to upconvert the Pareto front resolution. However, depending on the distribution of the known candidate solutions, we could not expect the accuracy of the estimation models and the estimated points from them. The proposed method, the iterative SMOA (I-SMOA), gradually improved the accuracy of the estimation models through their iterative update with evaluated solutions. Experimental results on the DTLZ2 test problem showed that the proposed I-SMOA obtained solutions uniformly distributed more than the one by the conventional SMOA, and the proposed I-SMOA achieved higher robustness on the initially given candidate solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K.: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms. Soft. Comput. 23(9), 3137–3166 (2019)
Simon, D.: Evolutionary Optimization Algorithms Biologically-Inspired and Population-Based Approaches to Computer Intelligence, chap. 8.1 Initialization, p. 180. Wiley (2013)
Takagi, T., Takadama, K., Sato, H.: Supervised multi-objective optimization algorithm using estimation. In: 2022 IEEE Congress on Evolutionary Computation (CEC 2022), pp. 1–8 (2022)
Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, Heidelberg (2012)
Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Liu, J.: Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation. Springer, Heidelberg (2013)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6
Hartikainen, M., Miettinen, K., Wiecek, M.M.: PAINT: Pareto front interpolation for nonlinear multiobjective optimization. Comput. Optim. Appl. 52(3), 845–867 (2012)
Kumar Singh, H., Shankar Bhattacharjee, K., Ray, T.: A projection-based approach for constructing piecewise linear Pareto front approximations. J. Mech. Des. 138(9), 091404 (2016)
Takagi, T., Takadama, K., Sato, H.: Pareto front estimation using unit hyperplane. In: Ishibuchi, H., et al. (eds.) EMO 2021. LNCS, vol. 12654, pp. 126–138. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72062-9_11
Kobayashi, K., Hamada, N., Sannai, A., Tanaka, A., Bannai, K., Sugiyama, M.: Bézier simplex fitting: describing Pareto fronts of simplicial problems with small samples in multi-objective optimization. In: AAAI Conference on Artificial Intelligence, vol. 33, pp. 2304–2313 (2019)
Tian, Y., Si, L., Zhang, X., Tan, K.C., Jin, Y.: Local model-based Pareto front estimation for multiobjective optimization. IEEE Trans. Syst. Man Cybern. Syst. 53, 623–634 (2022)
Zapotecas Martínez, S., Sosa Hernández, V.A., Aguirre, H., Tanaka, K., Coello Coello, C.A.: Using a family of curves to approximate the Pareto front of a multi-objective optimization problem. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 682–691. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_67
Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans. Evol. Comput. 13(5), 1167–1189 (2009)
Giagkiozis, I., Fleming, P.J.: Pareto front estimation for decision making. Evol. Comput. 22(4), 651–678 (2014)
Takagi, T., Takadama, K., Sato, H.: Incremental lattice design of weight vector set. In: 2020 Genetic and Evolutionary Computation Conference (GECCO 2020), pp. 1486–1494 (2020)
Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary many-objective optimization based on Kuhn-Munkres’ algorithm. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_1
Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4, 409–423 (1989)
Kim, P.: Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence, vol. 130, no. 21 (2017)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genet. Program Evolvable Mach. 6(2), 163–190 (2005)
Tian, Y., Cheng, R., Zhang, X., Jin, Y.: Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)
Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)
Farias, L.R., Araújo, A.F.: IM-MOEA/D: an inverse modeling multi-objective evolutionary algorithm based on decomposition. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2021), pp. 462–467. IEEE (2021)
Cheng, R., Jin, Y., Narukawa, K.: Adaptive reference vector generation for inverse model based evolutionary multiobjective optimization with degenerate and disconnected pareto fronts. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 127–140. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_9
Acknowledgment
This work was supported by JSPS KAKENHI Grant Number 22H03660.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Takagi, T., Takadama, K., Sato, H. (2023). Pareto Front Upconvert by Iterative Estimation Modeling and Solution Sampling. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-27250-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27249-3
Online ISBN: 978-3-031-27250-9
eBook Packages: Computer ScienceComputer Science (R0)