Abstract
This paper presents and discuss an overview of an AI pipeline to analyze the effects of substituting plastic film with Kraft paper in the tertiary packaging, i.e., in the external envelope of a pallet. Since there is no prior knowledge about paper wrapping yet, the goal is to understand the physics of the load unit—wrapped in paper—when subject to horizontal accelerations. This permits to study and analyze its rigidity and robustness to permanent deformations and/or excessive shifting during road or rail freight, to avoid damages and ripping of the envelope. The idea behind our AI pipeline is to virtually simulate such a situation, to precisely identify critical use cases, and eventually suggest a correction in the wrapping format. The first gain in using such an approach is to drastically reduce the number of physical tests needed to build a solid base knowledge about the behavior of Kraft paper enveloping the pallet during motion. The proposed pipeline consists of three phases: (i) data collection from real tests, (ii) modeling of the simulation, fitting relevant parameters between the actual test and the simulated one, and (iii) performing of virtual experiments on different settings, to suggest the best format. Computer vision and machine learning techniques are employed to accomplish these tasks, and preliminary results show encouraging performances of the proposed idea.
Project entitled “Machine learning to substitute LLDPE plastic film with Kraft paper in automatic pallet wrapping,” supported by ACMI S.p.A. and funded with D.M. 10.08.2021 n.1062 on FSE REACT-EU, by Ministero dell’Università e della Ricerca (MUR), under the Programma Operativo Nazionale (PON) “Ricerca e Innovazione” 2014–2020–Azione Green.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Autocad: https://www.autodesk.it/solutions/simulation/overview
Engineering & solutions for transport & logistic nv (estl nv, https://www.estl.be). Wafelstraat 46, 8540 Deerlijk, Belgium
EUMOS, the European safe logistics association. quality standards. https://eumos.eu/quality-standards/. Accessed 5 Aug 2022
Irrlicht: https://irrlicht.sourceforge.io/
Opencv: https://opencv.org/
Pychrono: https://www.projectchrono.org/pychrono/
Simscape: https://www.mathworks.com/products/simscape-multibody.html
European Commission: A European Strategy for Plastics in a Circular Economy 2018a (2018). https://ec.europa.eu/environment/circular-economy/pdf/plastics-strategy-annex.pdf. Accessed 5 Aug 2022
European Green Deal (2019–2024). https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. Accessed 5 Aug 2022
European Commission. Proposal for a regulation of the European Parliament and of the council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence act) and amending certain union legislative acts (2021). https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206 &from=EN. Accessed 5 Aug 2022
European Commission. A European approach to artificial intelligence (2022). https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence. Accessed 5 Aug 2022
Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47(2), 207–235 (2010). https://doi.org/10.1007/s10589-008-9223-4
Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)
Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 983–990. IEEE (2009)
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550. IEEE (2010)
Brunetti, A., Buongiorno, D., Trotta, G.F., Bevilacqua, V.: Computer vision and deep learning techniques for pedestrian detection and tracking: a survey. Neurocomputing 300, 17–33 (2018)
Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50
Foschi, E., Bonoli, A.: The commitment of packaging industry in the framework of the European strategy for plastics in a circular economy. Adm. Sci. 9(1), 18 (2019)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Bmvc. vol. 1, p. 6. Citeseer (2006)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)
Iman, M., Arabnia, H.R., Branchinst, R.M.: Pathways to artificial general intelligence: a brief overview of developments and ethical issues via artificial intelligence, machine learning, deep learning, and data science. In: Arabnia, H.R., Ferens, K., de la Fuente, D., Kozerenko, E.B., Olivas Varela, J.A., Tinetti, F.G. (eds.) Advances in Artificial Intelligence and Applied Cognitive Computing. TCSCI, pp. 73–87. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70296-0_6
Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759. IEEE (2010)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2011)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in neural Information Processing Systems, vol. 25 (2012)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Lukezic, A., Vojir, T., Zajc, L.C., Matas, J., Kristan, M.: Discriminative correlation filter with channel and spatial reliability. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6309–6318 (2017)
Marcus, G.: Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631 (2018)
Matthews, C., Moran, F., Jaiswal, A.K.: A review on European union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 283, 125263 (2021)
Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 850–855. IEEE (2006)
Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shekhar, S.S.: Artificial intelligence in automation. Artif. Intell. 3085(06), 14–17 (2019)
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)
Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147. PMLR (2013)
Tasora, A., et al.: Chrono: an open source multi-physics dynamics engine. In: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., Čermák, M. (eds.) HPCSE 2015. LNCS, vol. 9611, pp. 19–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40361-8_2
Tkaczyk, S., Drozd, M., Kędzierski, Ł, Santarek, K.: Study of the stability of palletized cargo by dynamic test method performed on laboratory test bench. Sensors 21(15), 5129 (2021)
Wan, J., Li, X., Dai, H.N., Kusiak, A., Martínez-García, M., Li, D.: Artificial-intelligence-driven customized manufacturing factory: key technologies, applications, and challenges. Proc. IEEE 109(4), 377–398 (2021). https://doi.org/10.1109/JPROC.2020.3034808
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Iotti, E., Dal Palù, A., Contesso, G., Bertinelli, F. (2023). Substitute Plastic Film with Kraft Paper in Automatic Pallet Wrapping: An AI Pipeline. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-27181-6_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27180-9
Online ISBN: 978-3-031-27181-6
eBook Packages: Computer ScienceComputer Science (R0)