Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimizing Local Feature Representations of 3D Point Clouds with Anisotropic Edge Modeling

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Abstract

An edge between two points describes rich information about the underlying surface. However, recent works merely use edge information as an ad hoc feature, which may undermine its effectiveness. In this study, we propose the Anisotropic Edge Modeling (AEM) block by which edges are modeled adaptively. As a result, the local feature representation is optimized where edges (e.g., object boundaries defined by ground truth) are appropriately enhanced. By stacking AEM blocks, AEM-Nets are constructed to tackle various point cloud understanding tasks. Extensive experiments demonstrate that AEM-Nets compare favorably to recent strong networks. In particular, AEM-Nets achieve state-of-the-art performance in object classification on ScanObjectNN, object segmentation on ShapeNet Part, and scene segmentation on S3DIS. Moreover, it is verified that AEM-Net outperforms the strong transformer-based method with significantly fewer parameters and FLOPs, achieving efficient learning. Qualitatively, the intuitive visualization of learned features successfully validates the effect of the AEM block.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1534–1543 (2016)

    Google Scholar 

  2. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

    Google Scholar 

  3. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9224–9232 (2018)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Hu, Z., Zhen, M., Bai, X., Fu, H., Tai, C.: JSENet: joint semantic segmentation and edge detection network for 3D Point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 222–239. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_14

    Chapter  Google Scholar 

  6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  7. Jiang, L., Zhao, H., Liu, S., Shen, X., Fu, C.W., Jia, J.: Hierarchical point-edge interaction network for point cloud semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10433–10441 (2019)

    Google Scholar 

  8. Kanezaki, A., Matsushita, Y., Nishida, Y.: RotationNet: joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5010–5019 (2018)

    Google Scholar 

  9. Lai, X., et al.: Stratified transformer for 3D point cloud segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8500–8509 (2022)

    Google Scholar 

  10. Lan, S., Yu, R., Yu, G., Davis, L.S.: Modeling local geometric structure of 3D point clouds using Geo-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 998–1008 (2019)

    Google Scholar 

  11. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: Convolution on \(\chi \)-transformed points. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 828–838 (2018)

    Google Scholar 

  12. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: a simple residual MLP framework. arXiv preprint arXiv:2202.07123 (2022)

  13. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1578–1587 (2019)

    Google Scholar 

  14. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  15. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  16. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems. vol. 30 (2017)

    Google Scholar 

  17. Ran, H., Liu, J., Wang, C.: Surface representation for point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18942–18952 (2022)

    Google Scholar 

  18. Sifre, L., Mallat, S.: Rigid-motion scattering for texture classification. arXiv preprint arXiv:1403.1687 (2014)

  19. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  20. Tang, L., Zhan, Y., Chen, Z., Yu, B., Tao, D.: Contrastive boundary learning for point cloud segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8489–8499 (2022)

    Google Scholar 

  21. Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S.: SEGCloud: semantic segmentation of 3D point clouds. In: 2017 International Conference on 3D Vision (3DV), pp. 537–547. IEEE (2017)

    Google Scholar 

  22. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)

    Google Scholar 

  23. Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, T., Yeung, S.K.: Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1588–1597 (2019)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  25. Wang, L., Huang, Y., Hou, Y., Zhang, S., Shan, J.: Graph attention convolution for point cloud semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10296–10305 (2019)

    Google Scholar 

  26. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (ToG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  27. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)

    Google Scholar 

  28. Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: learning curves for point clouds shape analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (October 2021)

    Google Scholar 

  29. Xu, M., Ding, R., Zhao, H., Qi, X.: PAConv: position adaptive convolution with dynamic kernel assembling on point clouds. arXiv preprint arXiv:2103.14635 (2021)

  30. Yang, J., et al.: Modeling point clouds with self-attention and gumbel subset sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3323–3332 (2019)

    Google Scholar 

  31. Yi, L., et al.: A scalable active framework for region annotation in 3D shape collections. ACM Trans. Graph. (ToG) 35(6), 1–12 (2016)

    Article  Google Scholar 

  32. Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., Lu, J.: Point-BERT: pre-training 3D point cloud transformers with masked point modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19313–19322 (2022)

    Google Scholar 

  33. Zhang, Z., Hua, B.S., Yeung, S.K.: ShellNet: efficient point cloud convolutional neural networks using concentric shells statistics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1607–1616 (2019)

    Google Scholar 

  34. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  35. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the projects commissioned by the New Energy and Industrial Technology Development Organization (JPNP18010 and JPNP20006), JSPS Grant-in-Aid for Scientific Research (21K12042), and Fundamental Research Funds for the Central Universities (DUT21RC(3)028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Liu or Weimin Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 494 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiu, H. et al. (2023). Optimizing Local Feature Representations of 3D Point Clouds with Anisotropic Edge Modeling. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27077-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27076-5

  • Online ISBN: 978-3-031-27077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics