Nothing Special   »   [go: up one dir, main page]

Skip to main content

Minimum Ply Covering of Points with Unit Squares

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2023)

Abstract

Given a set P of points and a set U of axis-parallel unit squares in the Euclidean plane, a minimum ply cover of P with U is a subset of U that covers P and minimizes the number of squares that share a common intersection, called the minimum ply cover number of P with U. Biedl et al. [Comput. Geom., 94:101712, 2020] showed that determining the minimum ply cover number for a set of points by a set of axis-parallel unit squares is NP-hard, and gave a polynomial-time 2-approximation algorithm for instances in which the minimum ply cover number is constant. The question of whether there exists a polynomial-time approximation algorithm remained open when the minimum ply cover number is \(\omega (1)\). We settle this open question and present a polynomial-time \((8+\varepsilon )\)-approximation algorithm for the general problem, for every fixed \(\varepsilon >0\).

This work is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, P.K., Ezra, E., Fox, K.: Geometric optimization revisited. In: Steffen, B., Woeginger, G.J. (eds.) Computing and Software Science - State of the Art and Perspectives, LNCS, vol. 10000, pp. 66–84. Springer, Cham (2019)

    Chapter  Google Scholar 

  2. Basappa, M., Das, G.K.: Discrete unit square cover problem. Discret. Math. Algorithms Appl. 10(6), 1850072:1–1850072:18 (2018)

    Google Scholar 

  3. Biedl, T.C., Biniaz, A., Lubiw, A.: Minimum ply covering of points with disks and squares. Comput. Geom. 94, 101712 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biniaz, A., Lin, Z.: Minimum ply covering of points with convex shapes. In: Proceedings of the 32nd Canadian Conference on Computational Geometry (CCCG), pp. 2–5 (2020)

    Google Scholar 

  5. Chan, T.M., He, Q.: Faster approximation algorithms for geometric set cover. In: Cabello, S., Chen, D.Z. (eds.) Proceedings of the 36th International Symposium on Computational Geometry (SoCG). LIPIcs, vol. 164, pp. 27:1–27:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  6. Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination can be hard: approximability of the unique coverage problem. SIAM J. Comput. 38(4), 1464–1483 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Durocher, S., Keil, J.M., Mondal, D.: Minimum ply covering of points with unit squares. CoRR abs/2208.06122 (2022)

    Google Scholar 

  8. Durocher, S., Mehrpour, S.: Interference minimization in \(k\)-connected wireless networks. In: Proceedings of the 29th Canadian Conference on Computational Geometry (CCCG), pp. 113–119 (2017)

    Google Scholar 

  9. Erlebach, T., van Leeuwen, E.J.: Approximating geometric coverage problems. In: Teng, S. (ed.) Procedings 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1267–1276. SIAM (2008)

    Google Scholar 

  10. Erlebach, T., van Leeuwen, E.J.: PTAS for weighted set cover on unit squares. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX/RANDOM -2010. LNCS, vol. 6302, pp. 166–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15369-3_13

    Chapter  Google Scholar 

  11. van Kreveld, M.J., Overmars, M.H.: Union-copy structures and dynamic segment trees. J. ACM 40(3), 635–652 (1993)

    Article  MATH  Google Scholar 

  12. Kuhn, F., von Rickenbach, P., Wattenhofer, R., Welzl, E., Zollinger, A.: Interference in cellular networks: the minimum membership set cover problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 188–198. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_21

    Chapter  Google Scholar 

  13. Misra, N., Moser, H., Raman, V., Saurabh, S., Sikdar, S.: The parameterized complexity of unique coverage and its variants. Algorithmica 65(3), 517–544 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajyoti Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Durocher, S., Keil, J.M., Mondal, D. (2023). Minimum Ply Covering of Points with Unit Squares. In: Lin, CC., Lin, B.M.T., Liotta, G. (eds) WALCOM: Algorithms and Computation. WALCOM 2023. Lecture Notes in Computer Science, vol 13973. Springer, Cham. https://doi.org/10.1007/978-3-031-27051-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27051-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27050-5

  • Online ISBN: 978-3-031-27051-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics