Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robot to Human Object Handover Using Vision and Joint Torque Sensor Modalities

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 7 (RiTA 2022)

Abstract

We present a robot-to-human object handover algorithm and implement it on a 7-DOF arm equipped with a 3-finger mechanical hand. The system performs a fully autonomous and robust object handover to a human receiver in real-time. Our algorithm relies on two complementary sensor modalities: joint torque sensors on the arm and an eye-in-hand RGB-D camera for sensor feedback. Our approach is entirely implicit, i.e., there is no explicit communication between the robot and the human receiver. Information obtained via the aforementioned sensor modalities are used as inputs to their related deep neural networks. While the torque sensor network detects the human receiver’s “intention” such as: pull, hold, or bump, the vision sensor network detects if the receiver’s fingers have wrapped around the object. Networks’ outputs are then fused, based on which a decision is made to either release the object or not. Despite substantive challenges in sensor feedback synchronization, object and human hand detection, our system achieves robust robot-to-human handover with 98% accuracy in our preliminary real experiments using human receivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In fact, that work used a specialized simple optical sensor precisely because they mention the unacceptable amount of computation time that would be taken for processing RGB images, a problem that we solve via the use of SSD network.

References

  1. Ortenzi, V., Cosgun, A., Pardi, T., Chan, W.P., Croft, E., Kulić, D.: Object handovers: a review for robotics. IEEE Trans. Robot. 37, 1855–1873 (2021)

    Article  Google Scholar 

  2. Chan, W.P., Parker, C.A., Van der Loos, H.M., Croft, E.A.: Grip forces and load forces in handovers: implications for designing human-robot handover controllers. In: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 9–16 (2012)

    Google Scholar 

  3. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  4. Sileo, M., Nigro, M., Bloisi, D.D., Pierri, F.: Vision based robot-to-robot object handover. In: 2021 20th International Conference on Advanced Robotics (ICAR), pp. 664–669. IEEE (2021)

    Google Scholar 

  5. Eguiluz, A.G., Rañó, I., Coleman, S.A., McGinnity, T.M.: Reliable object handover through tactile force sensing and effort control in the shadow robot hand. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 372–377. IEEE (2017)

    Google Scholar 

  6. Parastegari, S., Noohi, E., Abbasi, B., Žefran, M.: A fail-safe object handover controller. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2003–2008. IEEE (2016)

    Google Scholar 

  7. Parastegari, S., Noohi, E., Abbasi, B., Žefran, M.: Failure recovery in robot-human object handover. IEEE Trans. Rob. 34(3), 660–673 (2018)

    Article  Google Scholar 

  8. Shi, C., Shiomi, M., Smith, C., Kanda, T., Ishiguro, H.: A model of distributional handing interaction for a mobile robot. In: Robotics: Science and Systems, pp. 24–28 (2013)

    Google Scholar 

  9. Choi, Y.S., Chen, T., Jain, A., Anderson, C., Glass, J.D., Kemp, C.C.: Hand it over or set it down: a user study of object delivery with an assistive mobile manipulator. In: RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 736–743. IEEE (2009)

    Google Scholar 

  10. Grigore, E.C., Eder, K., Pipe, A.G., Melhuish, C., Leonards, U.: Joint action understanding improves robot-to-human object handover. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4622–4629. IEEE (2013)

    Google Scholar 

  11. Koene, A., Endo, S., Remazeilles, A., Prada, M., Wing, A.M.: Experimental testing of the coglaboration prototype system for fluent human-robot object handover interactions. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 249–254. IEEE (2014)

    Google Scholar 

  12. Prada, M., Remazeilles, A., Koene, A., Endo, S.: Implementation and experimental validation of dynamic movement primitives for object handover. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2146–2153. IEEE (2014)

    Google Scholar 

  13. Chan, W.P., Parker, C.A., Van der Loos, H.M., Croft, E.A.: A human-inspired object handover controller. Int. J. Robot. Res. 32(8), 971–983 (2013)

    Article  Google Scholar 

  14. Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11 807–11 816 (2019)

    Google Scholar 

  15. Zimmermann, C., Ceylan, D., Yang, J., Russell, B., Argus, M., Brox, T.: FreiHAND: a dataset for markerless capture of hand pose and shape from single RGB images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 813–822 (2019)

    Google Scholar 

  16. Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: HOnnotate: a method for 3D annotation of hand and object poses. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3196–3206 (2020)

    Google Scholar 

  17. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 2, pp. 1398–1403. IEEE (2002)

    Google Scholar 

  18. Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.: Learning movement primitives. In: Dario, P., Chatila, R. (eds.) Robotics Research. The Eleventh International Symposium. STAR, vol. 15, pp. 561–572. Springer, Heidelberg (2005). https://doi.org/10.1007/11008941_60

    Chapter  Google Scholar 

  19. Yang, W., Paxton, C., Cakmak, M., Fox, D.: Human grasp classification for reactive human-to-robot handovers. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 11 123–11 130. IEEE (2020)

    Google Scholar 

  20. Li, Z., Hauser, K.: Predicting object transfer position and timing in human-robot handover tasks. Sci. Syst. 38 (2015)

    Google Scholar 

  21. Luo, R., Hayne, R., Berenson, D.: Unsupervised early prediction of human reaching for human-robot collaboration in shared workspaces. Auton. Robot. 42(3), 631–648 (2018)

    Article  Google Scholar 

  22. Controzzi, M., Singh, H., Cini, F., Cecchini, T., Wing, A., Cipriani, C.: Humans adjust their grip force when passing an object according to the observed speed of the partner’s reaching out movement. Exp. Brain Res. 236(12), 3363–3377 (2018)

    Article  Google Scholar 

  23. Strabala, K., et al.: Toward seamless human-robot handovers. J. Hum.-Rob. Interact. 2(1), 112–132 (2013)

    Article  Google Scholar 

  24. Davari, M.-J., Hegedus, M., Gupta, K., Mehrandezh, M.: Identifying multiple interaction events from tactile data during robot-human object transfer. In: 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1–6. IEEE (2019)

    Google Scholar 

  25. Moradi, B.: (2021). https://github.com/Bmoradi93/SSD-Object-Detection

  26. Moradi, B.: (2021). https://github.com/Bmoradi93/SSD-Object-Detection-ROS2

  27. Szegedy, C., Reed, S., Erhan, D., Anguelov, D., Ioffe, D.: Scalable, high-quality object detection. arXiv preprint arXiv:1412.1441 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadhadi Mohandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohandes, M., Moradi, B., Gupta, K., Mehrandezh, M. (2023). Robot to Human Object Handover Using Vision and Joint Torque Sensor Modalities. In: Jo, J., et al. Robot Intelligence Technology and Applications 7. RiTA 2022. Lecture Notes in Networks and Systems, vol 642. Springer, Cham. https://doi.org/10.1007/978-3-031-26889-2_11

Download citation

Publish with us

Policies and ethics