Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mimic Octopus Attack: Dynamic Camouflage Adversarial Examples Using Mimetic Feature for 3D Humans

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2022)

Abstract

Physical adversarial attacks in object detection have become an attractive topic. Many works have proposed adversarial patches or camouflage to perform successful attacks in the real world, but all of these methods have drawbacks, especially for 3D humans. One is that the camouflage-based method is not dynamic or mimetic enough. That is, the adversarial texture is not rendered in conjunction with the background features of the target, which somehow violates the definition of adversarial examples; the other is that there is no detailing of non-rigid physical surfaces, such that the rendered textures are not robust and very rough in 3D scenarios. In this paper, we propose the Mimic Octopus Attack (MOA) to overcome the above gap, a novel method for generating a mimetic and robust physical adversarial texture to target objects to camouflage them against detectors with Multi-View and Multi-Scene. To achieve joint optimization, it utilizes the combined iterative training of mimetic style loss, adversarial loss, and human eye intuition. Experiments in specific scenarios of CARLA, which is generally recognized as an alternative to physical domains, demonstrate its advanced performance, resulting in a 67.62% decrease in mAP@0.5 for the YOLO-V5 detector compared to normal, an average increase of 4.14% compared to the state-of-the-art attacks and an average ASR of up to 85.28%. Besides, the robustness in attacking diverse populations and detectors of MOA proves its outstanding transferability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial examples. In: International Conference on Machine Learning, pp. 284–293. PMLR (2018)

    Google Scholar 

  2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  3. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch. arXiv preprint arXiv:1712.09665 (2017)

  4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  5. CCTVnerd: Can you trick CCTV AI using colorful patterns? (2019). https://youtu.be/fTqhsixhOaM

  6. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)

    Google Scholar 

  7. Duan, R., et al.: Adversarial laser beam: Effective physical-world attack to DNNs in a blink. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16062–16071 (2021)

    Google Scholar 

  8. Fan, D.P., Ji, G.P., Cheng, M.M., Shao, L.: Concealed object detection. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  9. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  13. Hu, Y.C.T., Kung, B.H., Tan, D.S., Chen, J.C., Hua, K.L., Cheng, W.H.: Naturalistic physical adversarial patch for object detectors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7848–7857 (2021)

    Google Scholar 

  14. Hu, Z., Huang, S., Zhu, X., Sun, F., Zhang, B., Hu, X.: Adversarial texture for fooling person detectors in the physical world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13307–13316 (2022)

    Google Scholar 

  15. Huang, L., et al.: Universal physical camouflage attacks on object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 720–729 (2020)

    Google Scholar 

  16. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: ARCH: animatable reconstruction of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102 (2020)

    Google Scholar 

  17. Jocher, G., et al.: Ultralytics/YOLOv5: v6.2 - YOLOv5 classification models, Apple M1, reproducibility, ClearML and Deci.ai integrations (2022). https://doi.org/10.5281/zenodo.7002879

  18. Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2018)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  20. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In: Artificial Intelligence Safety and Security, pp. 99–112. Chapman and Hall/CRC (2018)

    Google Scholar 

  21. Li, Y., Zhai, W., Cao, Y., Zha, Z.J.: Location-free camouflage generation network. arXiv preprint arXiv:2203.09845 (2022)

  22. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  23. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (2015)

    Google Scholar 

  24. Lu, J., Sibai, H., Fabry, E.: Adversarial examples that fool detectors. arXiv preprint arXiv:1712.02494 (2017)

  25. Lu, J., Sibai, H., Fabry, E., Forsyth, D.: No need to worry about adversarial examples in object detection in autonomous vehicles. arXiv preprint arXiv:1707.03501 (2017)

  26. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  27. Maesumi, A., Zhu, M., Wang, Y., Chen, T., Wang, Z., Bajaj, C.: Learning transferable 3D adversarial cloaks for deep trained detectors. arXiv preprint arXiv:2104.11101 (2021)

  28. Mir, A., Alldieck, T., Pons-Moll, G.: Learning to transfer texture from clothing images to 3D humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7023–7034 (2020)

    Google Scholar 

  29. Poulton, E.: Adaptive coloration in animals. Nature 146(3692), 144–145 (1940)

    Article  Google Scholar 

  30. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  31. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  33. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1528–1540 (2016)

    Google Scholar 

  34. Song, D., et al.: Physical adversarial examples for object detectors. In: 12th USENIX Workshop on Offensive Technologies (WOOT 2018) (2018)

    Google Scholar 

  35. Suryanto, N., et al.: DTA: physical camouflage attacks using differentiable transformation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15305–15314 (2022)

    Google Scholar 

  36. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  37. Thys, S., Van Ranst, W., Goedemé, T.: Fooling automated surveillance cameras: adversarial patches to attack person detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  38. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  39. Wang, D., et al.: FCA: learning a 3D full-coverage vehicle camouflage for multi-view physical adversarial attack. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2414–2422 (2022)

    Google Scholar 

  40. Wang, J., Liu, A., Yin, Z., Liu, S., Tang, S., Liu, X.: Dual attention suppression attack: generate adversarial camouflage in physical world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8565–8574 (2021)

    Google Scholar 

  41. Wu, T., Ning, X., Li, W., Huang, R., Yang, H., Wang, Y.: Physical adversarial attack on vehicle detector in the Carla simulator. arXiv preprint arXiv:2007.16118 (2020)

  42. Wu, Z., Lim, S.-N., Davis, L.S., Goldstein, T.: Making an invisibility cloak: real world adversarial attacks on object detectors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 1–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_1

    Chapter  Google Scholar 

  43. Xiao, C., Yang, D., Li, B., Deng, J., Liu, M.: MeshAdv: adversarial meshes for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6898–6907 (2019)

    Google Scholar 

  44. Yang, K., Lin, X.Y., Sun, Y., Ho, T.Y., Jin, Y.: 3D-Adv: black-box adversarial attacks against deep learning models through 3D sensors. In: 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 547–552. IEEE (2021)

    Google Scholar 

  45. Yin, B., et al.: Adv-makeup: a new imperceptible and transferable attack on face recognition. arXiv preprint arXiv:2105.03162 (2021)

  46. Zhang, Q., Yin, G., Nie, Y., Zheng, W.S.: Deep camouflage images. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12845–12852 (2020)

    Google Scholar 

  47. Zhang, Y., Foroosh, H., David, P., Gong, B.: CAMOU: learning physical vehicle camouflages to adversarially attack detectors in the wild. In: International Conference on Learning Representations (2018)

    Google Scholar 

  48. Zhu, Z., Su, H., Liu, C., Xiang, W., Zheng, S.: You cannot easily catch me: a low-detectable adversarial patch for object detectors. arXiv preprint arXiv:2109.15177 (2021)

Download references

Acknowledgements

We thank the reviewers for their insightful feedback. This work was supported in part by National Natural Science Foundation of China under Grant No. 62272459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Zhang, S., Wang, X., Hou, R. (2023). Mimic Octopus Attack: Dynamic Camouflage Adversarial Examples Using Mimetic Feature for 3D Humans. In: Deng, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2022. Lecture Notes in Computer Science, vol 13837. Springer, Cham. https://doi.org/10.1007/978-3-031-26553-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26553-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26552-5

  • Online ISBN: 978-3-031-26553-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics