Nothing Special   »   [go: up one dir, main page]

Skip to main content

No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13715))

Abstract

Convolutional neural networks (CNNs) have made resounding success in many computer vision tasks such as image classification and object detection. However, their performance degrades rapidly on tougher tasks where images are of low resolution or objects are small. In this paper, we point out that this roots in a defective yet common design in existing CNN architectures, namely the use of strided convolution and/or pooling layers, which results in a loss of fine-grained information and learning of less effective feature representations. To this end, we propose a new CNN building block called SPD-Conv in place of each strided convolution layer and each pooling layer (thus eliminates them altogether). SPD-Conv is comprised of a space-to-depth (SPD) layer followed by a non-strided convolution (Conv) layer, and can be applied in most if not all CNN architectures. We explain this new design under two most representative computer vision tasks: object detection and image classification. We then create new CNN architectures by applying SPD-Conv to YOLOv5 and ResNet, and empirically show that our approach significantly outperforms state-of-the-art deep learning models, especially on tougher tasks with low-resolution images and small objects. We have open-sourced our code at https://github.com/LabSAINT/SPD-Conv.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. COCO dataset (2017). https://cocodataset.org

  2. CodaLab COCO detection challenge (bounding box) (2019). https://competitions.codalab.org/competitions/20794

  3. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33–41 (1984)

    Google Scholar 

  4. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOV4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Chevalier, M., Thome, N., Cord, M., Fournier, J., Henaff, G., Dusch, E.: LR-CNN for fine-grained classification with varying resolution. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3101–3105. IEEE (2015)

    Google Scholar 

  7. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: Keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  8. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  9. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  11. Haris, M., Shakhnarovich, G., Ukita, N.: Task-driven super resolution: object detection in low-resolution images. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. CCIS, vol. 1516, pp. 387–395. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92307-5_45

    Chapter  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Jocher, G., et al.: https://github.com/ultralytics/yolov5 (2021). Released version available at the time of evaluation: 12 October 2021

  15. Kim, Y., Kang, B.-N., Kim, D.: SAN: learning relationship between convolutional features for multi-scale object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 328–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_20

    Chapter  Google Scholar 

  16. Koziarski, M., Cyganek, B.: Impact of low resolution on image recognition with deep neural networks: an experimental study. Int. J. Appl. Math. Comput. Sci. 28(4) (2018)

    Google Scholar 

  17. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced research) http://www.cs.toronto.edu/kriz/cifar.html

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS, vol. 25 (2012)

    Google Scholar 

  19. Le, Y., Yang, X.: Tiny ImageNet visual recognition challenge. CS 231N 7, 3 (2015)

    Google Scholar 

  20. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  22. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

  23. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)

    Google Scholar 

  24. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  25. Peng, X., Hoffman, J., Stella, X.Y., Saenko, K.: Fine-to-coarse knowledge transfer for low-res image classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3683–3687. IEEE (2016)

    Google Scholar 

  26. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  27. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  28. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  29. Sajjadi, M.S., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6626–6634 (2018)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  31. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection - snip. In: IEEE CVPR, pp. 3578–3587 (2018)

    Google Scholar 

  32. Singh, B., Najibi, M., Davis, L.S.: Sniper: efficient multi-scale training. In: 31st Proceedings of Conference on Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  33. Singh, M., Nagpal, S., Vatsa, M., Singh, R.: Enhancing fine-grained classification for low resolution images. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  34. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  35. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  36. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: scaled-yolov4: scaling cross stage partial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13029–13038 (2021)

    Google Scholar 

  37. Wang, Z., Chang, S., Yang, Y., Liu, D., Huang, T.S.: Studying very low resolution recognition using deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4792–4800 (2016)

    Google Scholar 

  38. Zheng, Z., et al.: Distance-IOU loss: Faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12993–13000 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sunkara, R., Luo, T. (2023). No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13715. Springer, Cham. https://doi.org/10.1007/978-3-031-26409-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26409-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26408-5

  • Online ISBN: 978-3-031-26409-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics