Abstract
Keyphrases can concisely describe the high-level topics discussed in a document, and thus keyphrase prediction compresses document’s hierarchical semantic information into a few important representative phrases. Numerous methods have been proposed to use the encoder-decoder framework in Euclidean space to generate keyphrases. However, their ability to capture the hierarchical structures is limited by the nature of Euclidean space. To this end, we propose a new research direction that aims to encode the hierarchical semantic information of a document into the low-dimensional representation and then decompress it to generate keyphrases in a hyperbolic space, which can effectively capture the underlying semantic hierarchical structures. In addition, we propose a novel hyperbolic attention mechanism to selectively focus on the high-level phrases in hierarchical semantics. To the best of our knowledge, this is the first study to explore a hyperbolic network for keyphrase generation. The experimental results illustrate that our method outperforms fifteen state-of-the-art methods across five datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The code of our model is available at https://github.com/SkyFishMoon/HyAN.
- 2.
References
Ahmad, W.U., Bai, X., Lee, S., Chang, K.W.: Select, extract and generate: neural keyphrase generation with layer-wise coverage attention. In: Proceedings of ACL (2021)
Birman, G.S., Ungar, A.A.: The hyperbolic derivative in the Poincaré ball model of hyperbolic geometry. J. Math. Anal. Appl. 254(1), 321–333 (2001)
Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)
Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., Jatowt, A.: Yake! keyword extraction from single documents using multiple local features. Inf. Sci. 509, 257–289 (2020)
Chan, H.P., Chen, W., Wang, L., King, I.: Neural keyphrase generation via reinforcement learning with adaptive rewards. In: Proceedings of ACL (2019)
Chen, J., Zhang, X., Wu, Y., Yan, Z., Li, Z.: Keyphrase generation with correlation constraints. In: Proceedings of EMNLP (2018)
Chen, W., Chan, H.P., Li, P., Bing, L., King, I.: An integrated approach for keyphrase generation via exploring the power of retrieval and extraction. In: Proceedings of NAACL (2019)
Chen, W., Chan, H.P., Li, P., King, I.: Exclusive hierarchical decoding for deep keyphrase generation. In: Proceedings of ACL (2020)
Chen, W., Gao, Y., Zhang, J., King, I., Lyu, M.R.: Title-guided encoding for keyphrase generation. In: Proceedings of AAAI (2019)
Dhingra, B., Shallue, C.J., Norouzi, M., Dai, A.M., Dahl, G.E.: Embedding text in hyperbolic spaces. In: Proceedings of Twelfth Workshop on TextGraphs (2018)
Florescu, C., Caragea, C.: Positionrank: an unsupervised approach to keyphrase extraction from scholarly documents. In: Proceedings of ACL (2017)
Ganea, O., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. In: Proceedings of NIPS (2018)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of AISTATS (2010)
Gu, J., Lu, Z., Li, H., Li, V.O.: Incorporating copying mechanism in sequence-to-sequence learning. In: Proceedings of ACL (2016)
Gulcehre, C., et al.: Hyperbolic attention networks. In: Proceedings of ICLR (2019)
Hasan, K.S., Ng, V.: Automatic keyphrase extraction: a survey of the state of the art. In: Proceedings of ACL (2014)
Hulth, A., Megyesi, B.B.: A study on automatically extracted keywords in text categorization. In: Proceedings of ACL (2006)
Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: Semeval-2010 task: automatic keyphrase extraction from scientific articles. In: Proceedings of Workshop on SemEval (2010)
Krapivin, M., Autaeu, A., Marchese, M.: Large dataset for keyphrases extraction. Technical report, University of Trento (2009)
Le, M., Roller, S., Papaxanthos, L., Kiela, D., Nickel, M.: Inferring concept hierarchies from text corpora via hyperbolic embeddings. In: Proceedings of ACL (2019)
Liu, Z., Huang, W., Zheng, Y., Sun, M.: Automatic keyphrase extraction via topic decomposition. In: Proceedings of EMNLP (2010)
Medelyan, O., Frank, E., Witten, I.H.: Human-competitive tagging using automatic keyphrase extraction. In: Proceedings of EMNLP (2009)
Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., Chi, Y.: Deep keyphrase generation. In: Proceedings of ACL (2017)
Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of EMNLP (2004)
Nguyen, T.D., Kan, M.Y.: Keyphrase extraction in scientific publications. In: Proceedings of ICADL (2007)
Nickel, M., Kiela, D.: Learning continuous hierarchies in the Lorentz model of hyperbolic geometry. In: Proceedings of ICML (2018)
Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of NIPS (2017)
Patel, K., Caragea, C.: Exploiting position and contextual word embeddings for keyphrase extraction from scientific papers. In: Proceedings of ECACL (2021)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Proceedings of NIPS (2014)
Tang, Y., Huang, W., Liu, Q., Zhang, B.: Qalink: enriching text documents with relevant Q &A site contents. In: Proceedings of CIKM (2017)
Tifrea, A., Bécigneul, G., Ganea, O.E.: Poincaré glove: hyperbolic word embeddings. In: Proceedings of ICLR (2019)
Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood knowledge. In: Proceedings of AAAI (2008)
Wang, L., Cardie, C.: Domain-independent abstract generation for focused meeting summarization. In: Proceedings of ACL (2013)
Wang, Y., Li, J., Chan, H.P., King, I., Lyu, M.R., Shi, S.: Topic-aware neural keyphrase generation for social media language. In: Proceedings of ACL (2019)
Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevillmanning, C.G.: Kea: practical automatic keyphrase extraction. In: Proceedings of JCDL (1999)
Ye, H., Wang, L.: Semi-supervised learning for neural keyphrase generation. In: Proceedings of EMNLP. Proceedings of ACL (2018)
Ye, J., Gui, T., Luo, Y., Xu, Y., Zhang, Q.: One2set: generating diverse keyphrases as a set. In: Proceedings of ACL (2021)
Yuan, X., Wang, T., Meng, R., Thaker, K., Brusilovsky, P., He, D.: One size does not fit all: Generating and evaluating variable number of keyphrases. In: Proceedings of ACL (2020)
Zhang, Y., Chang, Y., Liu, X., Gollapalli, S.D., Li, X., Xiao, C.: Mike: keyphrase extraction by integrating multidimensional information. In: Proceedings of CIKM (2017)
Zhang, Y., Jiang, T., Yang, T., Li, X., Wang, S.: HTKG: deep keyphrase generation with neural hierarchical topic guidance. In: Proceedings of SIGIR (2022)
Zhao, J., Zhang, Y.: Incorporating linguistic constraints into keyphrase generation. In: Proceedings of ACL (2019)
Acknowledgements
This work was partially supported by grants from the Scientific Research Project of Tianjin Educational Committee (Grant No. 2021ZD002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Yang, T., Jiang, T., Li, X., Wang, S. (2023). Hyperbolic Deep Keyphrase Generation. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13714. Springer, Cham. https://doi.org/10.1007/978-3-031-26390-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-26390-3_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26389-7
Online ISBN: 978-3-031-26390-3
eBook Packages: Computer ScienceComputer Science (R0)