Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hyperbolic Deep Keyphrase Generation

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13714))

Abstract

Keyphrases can concisely describe the high-level topics discussed in a document, and thus keyphrase prediction compresses document’s hierarchical semantic information into a few important representative phrases. Numerous methods have been proposed to use the encoder-decoder framework in Euclidean space to generate keyphrases. However, their ability to capture the hierarchical structures is limited by the nature of Euclidean space. To this end, we propose a new research direction that aims to encode the hierarchical semantic information of a document into the low-dimensional representation and then decompress it to generate keyphrases in a hyperbolic space, which can effectively capture the underlying semantic hierarchical structures. In addition, we propose a novel hyperbolic attention mechanism to selectively focus on the high-level phrases in hierarchical semantics. To the best of our knowledge, this is the first study to explore a hyperbolic network for keyphrase generation. The experimental results illustrate that our method outperforms fifteen state-of-the-art methods across five datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code of our model is available at https://github.com/SkyFishMoon/HyAN.

  2. 2.

    https://github.com/duanzhihua/pytorch-pretrained-BERT.

References

  1. Ahmad, W.U., Bai, X., Lee, S., Chang, K.W.: Select, extract and generate: neural keyphrase generation with layer-wise coverage attention. In: Proceedings of ACL (2021)

    Google Scholar 

  2. Birman, G.S., Ungar, A.A.: The hyperbolic derivative in the Poincaré ball model of hyperbolic geometry. J. Math. Anal. Appl. 254(1), 321–333 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  4. Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., Jatowt, A.: Yake! keyword extraction from single documents using multiple local features. Inf. Sci. 509, 257–289 (2020)

    Article  Google Scholar 

  5. Chan, H.P., Chen, W., Wang, L., King, I.: Neural keyphrase generation via reinforcement learning with adaptive rewards. In: Proceedings of ACL (2019)

    Google Scholar 

  6. Chen, J., Zhang, X., Wu, Y., Yan, Z., Li, Z.: Keyphrase generation with correlation constraints. In: Proceedings of EMNLP (2018)

    Google Scholar 

  7. Chen, W., Chan, H.P., Li, P., Bing, L., King, I.: An integrated approach for keyphrase generation via exploring the power of retrieval and extraction. In: Proceedings of NAACL (2019)

    Google Scholar 

  8. Chen, W., Chan, H.P., Li, P., King, I.: Exclusive hierarchical decoding for deep keyphrase generation. In: Proceedings of ACL (2020)

    Google Scholar 

  9. Chen, W., Gao, Y., Zhang, J., King, I., Lyu, M.R.: Title-guided encoding for keyphrase generation. In: Proceedings of AAAI (2019)

    Google Scholar 

  10. Dhingra, B., Shallue, C.J., Norouzi, M., Dai, A.M., Dahl, G.E.: Embedding text in hyperbolic spaces. In: Proceedings of Twelfth Workshop on TextGraphs (2018)

    Google Scholar 

  11. Florescu, C., Caragea, C.: Positionrank: an unsupervised approach to keyphrase extraction from scholarly documents. In: Proceedings of ACL (2017)

    Google Scholar 

  12. Ganea, O., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. In: Proceedings of NIPS (2018)

    Google Scholar 

  13. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of AISTATS (2010)

    Google Scholar 

  14. Gu, J., Lu, Z., Li, H., Li, V.O.: Incorporating copying mechanism in sequence-to-sequence learning. In: Proceedings of ACL (2016)

    Google Scholar 

  15. Gulcehre, C., et al.: Hyperbolic attention networks. In: Proceedings of ICLR (2019)

    Google Scholar 

  16. Hasan, K.S., Ng, V.: Automatic keyphrase extraction: a survey of the state of the art. In: Proceedings of ACL (2014)

    Google Scholar 

  17. Hulth, A., Megyesi, B.B.: A study on automatically extracted keywords in text categorization. In: Proceedings of ACL (2006)

    Google Scholar 

  18. Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: Semeval-2010 task: automatic keyphrase extraction from scientific articles. In: Proceedings of Workshop on SemEval (2010)

    Google Scholar 

  19. Krapivin, M., Autaeu, A., Marchese, M.: Large dataset for keyphrases extraction. Technical report, University of Trento (2009)

    Google Scholar 

  20. Le, M., Roller, S., Papaxanthos, L., Kiela, D., Nickel, M.: Inferring concept hierarchies from text corpora via hyperbolic embeddings. In: Proceedings of ACL (2019)

    Google Scholar 

  21. Liu, Z., Huang, W., Zheng, Y., Sun, M.: Automatic keyphrase extraction via topic decomposition. In: Proceedings of EMNLP (2010)

    Google Scholar 

  22. Medelyan, O., Frank, E., Witten, I.H.: Human-competitive tagging using automatic keyphrase extraction. In: Proceedings of EMNLP (2009)

    Google Scholar 

  23. Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., Chi, Y.: Deep keyphrase generation. In: Proceedings of ACL (2017)

    Google Scholar 

  24. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of EMNLP (2004)

    Google Scholar 

  25. Nguyen, T.D., Kan, M.Y.: Keyphrase extraction in scientific publications. In: Proceedings of ICADL (2007)

    Google Scholar 

  26. Nickel, M., Kiela, D.: Learning continuous hierarchies in the Lorentz model of hyperbolic geometry. In: Proceedings of ICML (2018)

    Google Scholar 

  27. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Proceedings of NIPS (2017)

    Google Scholar 

  28. Patel, K., Caragea, C.: Exploiting position and contextual word embeddings for keyphrase extraction from scientific papers. In: Proceedings of ECACL (2021)

    Google Scholar 

  29. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Proceedings of NIPS (2014)

    Google Scholar 

  30. Tang, Y., Huang, W., Liu, Q., Zhang, B.: Qalink: enriching text documents with relevant Q &A site contents. In: Proceedings of CIKM (2017)

    Google Scholar 

  31. Tifrea, A., Bécigneul, G., Ganea, O.E.: Poincaré glove: hyperbolic word embeddings. In: Proceedings of ICLR (2019)

    Google Scholar 

  32. Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood knowledge. In: Proceedings of AAAI (2008)

    Google Scholar 

  33. Wang, L., Cardie, C.: Domain-independent abstract generation for focused meeting summarization. In: Proceedings of ACL (2013)

    Google Scholar 

  34. Wang, Y., Li, J., Chan, H.P., King, I., Lyu, M.R., Shi, S.: Topic-aware neural keyphrase generation for social media language. In: Proceedings of ACL (2019)

    Google Scholar 

  35. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevillmanning, C.G.: Kea: practical automatic keyphrase extraction. In: Proceedings of JCDL (1999)

    Google Scholar 

  36. Ye, H., Wang, L.: Semi-supervised learning for neural keyphrase generation. In: Proceedings of EMNLP. Proceedings of ACL (2018)

    Google Scholar 

  37. Ye, J., Gui, T., Luo, Y., Xu, Y., Zhang, Q.: One2set: generating diverse keyphrases as a set. In: Proceedings of ACL (2021)

    Google Scholar 

  38. Yuan, X., Wang, T., Meng, R., Thaker, K., Brusilovsky, P., He, D.: One size does not fit all: Generating and evaluating variable number of keyphrases. In: Proceedings of ACL (2020)

    Google Scholar 

  39. Zhang, Y., Chang, Y., Liu, X., Gollapalli, S.D., Li, X., Xiao, C.: Mike: keyphrase extraction by integrating multidimensional information. In: Proceedings of CIKM (2017)

    Google Scholar 

  40. Zhang, Y., Jiang, T., Yang, T., Li, X., Wang, S.: HTKG: deep keyphrase generation with neural hierarchical topic guidance. In: Proceedings of SIGIR (2022)

    Google Scholar 

  41. Zhao, J., Zhang, Y.: Incorporating linguistic constraints into keyphrase generation. In: Proceedings of ACL (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the Scientific Research Project of Tianjin Educational Committee (Grant No. 2021ZD002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Yang, T., Jiang, T., Li, X., Wang, S. (2023). Hyperbolic Deep Keyphrase Generation. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13714. Springer, Cham. https://doi.org/10.1007/978-3-031-26390-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26390-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26389-7

  • Online ISBN: 978-3-031-26390-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics