Nothing Special   »   [go: up one dir, main page]

Skip to main content

Energy-Efficient Image Processing Using Binary Neural Networks with Hadamard Transform

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13845))

Included in the following conference series:

Abstract

Binary neural networks have recently begun to be used as a highly energy- and computation-efficient image processing technique for computer vision tasks. This paper proposes a novel extension of existing binary neural network technology based on the use of a Hadamard transform in the input layer of a binary neural network. Previous state-of-the-art binary neural networks require floating-point arithmetic at several parts of the neural network model computation in order to maintain a sufficient level of accuracy. The Hadamard transform is similar to a Discrete Cosine Transform (used in the popular JPEG image compression method) except that it does not include expensive multiplication operations. In this paper, it is shown that the Hadamard transform can be used to replace the most expensive floating-point arithmetic portion of a binary neural network. In order to test the efficacy of this proposed method, three types of experiments were conducted: application of the proposed method to several state-of-the-art neural network models, verification of its effectiveness in a large image dataset (ImageNet), and experiments to verify the effectiveness of the Hadamard transform by comparing the performance of binary neural networks with and without the Hadamard transform. The results show that the Hadamard transform can be used to implement a highly energy-efficient binary neural network with only a miniscule loss of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, T., Zhang, Z., Ouyang, X., Liu, Z., Shen, Z., Wang, Z.: “BNN-BN=?”: Training binary neural networks without batch normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4619–4629 (2021)

    Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  3. Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  4. Diana Andrushia, A., Thangarjan, R.: Saliency-based image compression using Walsh–Hadamard transform (WHT). In: Hemanth, J., Balas, V.E. (eds.) Biologically Rationalized Computing Techniques For Image Processing Applications. LNCVB, vol. 25, pp. 21–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61316-1_2

    Chapter  Google Scholar 

  5. GG, L.P., Domnic, S.: Walsh-Hadamard transform kernel-based feature vector for shot boundary detection. IEEE Trans. Image Process. 23(12), 5187–5197 (2014)

    Google Scholar 

  6. Ghrare, S.E., Khobaiz, A.R.: Digital image compression using block truncation coding and Walsh Hadamard transform hybrid technique. In: 2014 International Conference on Computer, Communications, and Control Technology (I4CT), pp. 477–480. IEEE (2014)

    Google Scholar 

  7. Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural networks straight from JPEG. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  10. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks. In: Advances in Neural Information Processing Systems 29 (2016)

    Google Scholar 

  11. Ju, S., Lee, Y., Lee, S.: Convolutional neural networks with discrete cosine transform features. IEEE Trans. Comput. 71, 3389–3395 (2022)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical Report (2009)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (2012)

    Google Scholar 

  15. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  16. Liu, Z., Shen, Z., Li, S., Helwegen, K., Huang, D., Cheng, K.T.: How do Adam and training strategies help BNNs optimization. In: International Conference on Machine Learning, pp. 6936–6946. PMLR (2021)

    Google Scholar 

  17. Liu, Z., Shen, Z., Savvides, M., Cheng, K.-T.: ReActNet: towards precise binary neural network with generalized activation functions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 143–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_9

    Chapter  Google Scholar 

  18. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.-T.: Bi-Real Net: enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 747–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_44

    Chapter  Google Scholar 

  19. Martinez, B., Yang, J., Bulat, A., Tzimiropoulos, G.: Training binary neural networks with real-to-binary convolutions. arXiv preprint arXiv:2003.11535 (2020)

  20. Mehrotra, R., Namuduri, K.R., Ranganathan, N.: Gabor filter-based edge detection. Pattern Recogn. 25(12), 1479–1494 (1992)

    Article  Google Scholar 

  21. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  22. Pan, H., Badawi, D., Cetin, A.E.: Fast Walsh-Hadamard transform and smooth-thresholding based binary layers in deep neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4650–4659 (2021)

    Google Scholar 

  23. Pratt, W.K., Kane, J., Andrews, H.C.: Hadamard transform image coding. Proc. IEEE 57(1), 58–68 (1969)

    Article  Google Scholar 

  24. Qin, H., Gong, R., Liu, X., Bai, X., Song, J., Sebe, N.: Binary neural networks: a survey. Pattern Recogn. 105, 107281 (2020)

    Article  Google Scholar 

  25. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  26. Salomon, D.: Data compression: the complete reference. Springer Science & Business Media (2004). https://doi.org/10.1007/978-1-84628-603-2

  27. Ulicny, M., Krylov, V.A., Dahyot, R.: Harmonic convolutional networks based on discrete cosine transform. Pattern Recogn. 129, 108707 (2022)

    Article  Google Scholar 

  28. Valova, I., Kosugi, Y.: Hadamard-based image decomposition and compression. IEEE Trans. Inf Technol. Biomed. 4(4), 306–319 (2000)

    Article  Google Scholar 

  29. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  30. Zhang, Y., Pan, J., Liu, X., Chen, H., Chen, D., Zhang, Z.: FracBNN: accurate and fpga-efficient binary neural networks with fractional activations. In: The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 171–182 (2021)

    Google Scholar 

  31. Zhang, Y., Zhang, Z., Lew, L.: PokeBNN: a binary pursuit of lightweight accuracy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12475–12485 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2019-0-01906, Artificial Intelligence Graduate School Program(POSTECH))

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunggu Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, J., Lee, S. (2023). Energy-Efficient Image Processing Using Binary Neural Networks with Hadamard Transform. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13845. Springer, Cham. https://doi.org/10.1007/978-3-031-26348-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26348-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26347-7

  • Online ISBN: 978-3-031-26348-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics