Abstract
Binary neural networks have recently begun to be used as a highly energy- and computation-efficient image processing technique for computer vision tasks. This paper proposes a novel extension of existing binary neural network technology based on the use of a Hadamard transform in the input layer of a binary neural network. Previous state-of-the-art binary neural networks require floating-point arithmetic at several parts of the neural network model computation in order to maintain a sufficient level of accuracy. The Hadamard transform is similar to a Discrete Cosine Transform (used in the popular JPEG image compression method) except that it does not include expensive multiplication operations. In this paper, it is shown that the Hadamard transform can be used to replace the most expensive floating-point arithmetic portion of a binary neural network. In order to test the efficacy of this proposed method, three types of experiments were conducted: application of the proposed method to several state-of-the-art neural network models, verification of its effectiveness in a large image dataset (ImageNet), and experiments to verify the effectiveness of the Hadamard transform by comparing the performance of binary neural networks with and without the Hadamard transform. The results show that the Hadamard transform can be used to implement a highly energy-efficient binary neural network with only a miniscule loss of accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, T., Zhang, Z., Ouyang, X., Liu, Z., Shen, Z., Wang, Z.: “BNN-BN=?”: Training binary neural networks without batch normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4619–4629 (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)
Diana Andrushia, A., Thangarjan, R.: Saliency-based image compression using Walsh–Hadamard transform (WHT). In: Hemanth, J., Balas, V.E. (eds.) Biologically Rationalized Computing Techniques For Image Processing Applications. LNCVB, vol. 25, pp. 21–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61316-1_2
GG, L.P., Domnic, S.: Walsh-Hadamard transform kernel-based feature vector for shot boundary detection. IEEE Trans. Image Process. 23(12), 5187–5197 (2014)
Ghrare, S.E., Khobaiz, A.R.: Digital image compression using block truncation coding and Walsh Hadamard transform hybrid technique. In: 2014 International Conference on Computer, Communications, and Control Technology (I4CT), pp. 477–480. IEEE (2014)
Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural networks straight from JPEG. In: Advances in Neural Information Processing Systems 31 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks. In: Advances in Neural Information Processing Systems 29 (2016)
Ju, S., Lee, Y., Lee, S.: Convolutional neural networks with discrete cosine transform features. IEEE Trans. Comput. 71, 3389–3395 (2022)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical Report (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (2012)
Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network. In: Advances in Neural Information Processing Systems 30 (2017)
Liu, Z., Shen, Z., Li, S., Helwegen, K., Huang, D., Cheng, K.T.: How do Adam and training strategies help BNNs optimization. In: International Conference on Machine Learning, pp. 6936–6946. PMLR (2021)
Liu, Z., Shen, Z., Savvides, M., Cheng, K.-T.: ReActNet: towards precise binary neural network with generalized activation functions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 143–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_9
Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.-T.: Bi-Real Net: enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 747–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_44
Martinez, B., Yang, J., Bulat, A., Tzimiropoulos, G.: Training binary neural networks with real-to-binary convolutions. arXiv preprint arXiv:2003.11535 (2020)
Mehrotra, R., Namuduri, K.R., Ranganathan, N.: Gabor filter-based edge detection. Pattern Recogn. 25(12), 1479–1494 (1992)
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)
Pan, H., Badawi, D., Cetin, A.E.: Fast Walsh-Hadamard transform and smooth-thresholding based binary layers in deep neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4650–4659 (2021)
Pratt, W.K., Kane, J., Andrews, H.C.: Hadamard transform image coding. Proc. IEEE 57(1), 58–68 (1969)
Qin, H., Gong, R., Liu, X., Bai, X., Song, J., Sebe, N.: Binary neural networks: a survey. Pattern Recogn. 105, 107281 (2020)
Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32
Salomon, D.: Data compression: the complete reference. Springer Science & Business Media (2004). https://doi.org/10.1007/978-1-84628-603-2
Ulicny, M., Krylov, V.A., Dahyot, R.: Harmonic convolutional networks based on discrete cosine transform. Pattern Recogn. 129, 108707 (2022)
Valova, I., Kosugi, Y.: Hadamard-based image decomposition and compression. IEEE Trans. Inf Technol. Biomed. 4(4), 306–319 (2000)
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems 27 (2014)
Zhang, Y., Pan, J., Liu, X., Chen, H., Chen, D., Zhang, Z.: FracBNN: accurate and fpga-efficient binary neural networks with fractional activations. In: The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 171–182 (2021)
Zhang, Y., Zhang, Z., Lew, L.: PokeBNN: a binary pursuit of lightweight accuracy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12475–12485 (2022)
Acknowledgements
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2019-0-01906, Artificial Intelligence Graduate School Program(POSTECH))
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Park, J., Lee, S. (2023). Energy-Efficient Image Processing Using Binary Neural Networks with Hadamard Transform. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13845. Springer, Cham. https://doi.org/10.1007/978-3-031-26348-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-26348-4_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26347-7
Online ISBN: 978-3-031-26348-4
eBook Packages: Computer ScienceComputer Science (R0)