Abstract
Deep learning algorithms for Multi-view Stereo (MVS) have surpassed traditional MVS methods in recent years, due to enhanced reconstruction quality and runtime. Deep-learning based methods, on the other side, continue to generate overly smoothed depths, resulting in poor reconstruction. In this paper, we aim to Boost Depth Estimation (BDE) for MVS and present an approach, termed as BDE-MVSNet, for reconstructing high-quality point clouds with precise depth prediction. We present a non-linear strategy that derives an adaptive depth range (ADR) from the estimated probability, motivated by distinctive differences in estimated probability between foreground and background pixels. ADR also tends to decrease fuzzy boundaries via upsampling low-resolution depth maps between stages. Additionally, we provide a novel structure-guided normal ranking (SGNR) loss that imposes geometrical consistency in boundary areas by using the surface normal vector. Extensive experiments on DTU dataset, Tanks and Temples benchmark, and BlendedMVS dataset demonstrate that our method outperforms known methods and achieves state-of-the-art performance.
Y. Ding and Z. Li—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhu, Q., Min, C., Wei, Z., Chen, Y., Wang, G.: Deep learning for multi-view stereo via plane sweep: a survey (2021)
Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2007)
Campbell, N.D.F., Vogiatzis, G., Hernández, C., Cipolla, R.: Using multiple hypotheses to improve depth-maps for multi-view stereo. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 766–779. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_58
Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1362–1376 (2009)
Tola, E., Strecha, C., Fua, P.: Efficient large-scale multi-view stereo for ultra high-resolution image sets. Mach. Vis. Appl. 23, 903–920 (2012)
Galliani, S., Lasinger, K., Schindler, K.: Massively parallel multiview stereopsis by surface normal diffusion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 873–881 (2015)
Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 785–801. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_47
Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., Tan, P.: Cascade cost volume for high-resolution multi-view stereo and stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2492–2501 (2020)
Zhang, J., Yao, Y., Li, S., Luo, Z., Fang, T.: Visibility-aware multi-view stereo network. In: British Machine Vision Conference (2020)
Cheng, S., et al.: Deep stereo using adaptive thin volume representation with uncertainty awareness. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2521–2531 (2020)
Yi, P., Tang, S., Yao, J.: DDR-net: learning multi-stage multi-view stereo with dynamic depth range (2021)
Wang, F., Galliani, S., Vogel, C., Speciale, P., Pollefeys, M.: PatchmatchNet: Learned multi-view patchmatch stereo. In: IEEE Conference on Computer Vision and Pattern Recognition. (2021) 14194–14203
Ding, Y., et al.: Transmvsnet: global context-aware multi-view stereo network with transformers. arXiv preprint arXiv:2111.14600 (2021)
Chen, W., Fu, Z., Yang, D., Deng, J.: Single-image depth perception in the wild. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Xian, K., et al.: Monocular relative depth perception with web stereo data supervision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 311–320 (2018)
Xian, K., Zhang, J., Wang, O., Mai, L., Lin, Z., Cao, Z.: Structure-guided ranking loss for single image depth prediction. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 608–617 (2020)
Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanaes, H.: Large scale multi-view stereopsis evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413 (2014)
Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. 36, 1–13 (2017)
Yao, Y., Luo, Z., Li, S., Zhang, J., Quan, L.: BlendedMVS: a large-scale dataset for generalized multi-view stereo networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1787–1796 (2020)
Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., Quan, L.: Recurrent MVSNet for high-resolution multi-view stereo depth inference. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525–5534 (2019)
Yan, J., et al.: Dense hybrid recurrent multi-view stereo net with dynamic consistency checking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 674–689. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_39
Wei, Z., Zhu, Q., Min, C., Chen, Y., Wang, G.: AA-RMVSNet: adaptive aggregation recurrent multi-view stereo network. IEEE International Conference on Computer Vision (2021)
Yin, W., Liu, Y., Shen, C.: Virtual normal: enforcing geometric constraints for accurate and robust depth prediction. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2021)
Long, X., Liu, L., Theobalt, C., Wang, W.: Occlusion-aware depth estimation with adaptive normal constraints. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 640–657. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_37
Chakrabarti, A., Shao, J., Shakhnarovich, G.: Depth from a single image by harmonizing overcomplete local network predictions. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)
Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3268–3277 (2019)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Galliani, S., Lasinger, K., Schindler, K.: Massively parallel multiview stereopsis by surface normal diffusion. In: IEEE International Conference on Computer Vision, pp. 873–881 (2015)
Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31
Yang, J., Mao, W., Alvarez, J.M., Liu, M.: Cost volume pyramid based depth inference for multi-view stereo. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4877–4886 (2020)
Wei, Z., Zhu, Q., Min, C., Chen, Y., Wang, G.: AA-RMVSNET: adaptive aggregation recurrent multi-view stereo network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6187–6196 (2021)
Ma, X., Gong, Y., Wang, Q., Huang, J., Chen, L., Yu, F.: Epp-mvsnet: epipolar-assembling based depth prediction for multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5732–5740 (2021)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ding, Y., Li, Z., Huang, D., Zhang, K., Li, Z., Feng, W. (2023). Adaptive Range Guided Multi-view Depth Estimation with Normal Ranking Loss. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13841. Springer, Cham. https://doi.org/10.1007/978-3-031-26319-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-26319-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26318-7
Online ISBN: 978-3-031-26319-4
eBook Packages: Computer ScienceComputer Science (R0)