Nothing Special   »   [go: up one dir, main page]

Skip to main content

Generating Multiple Hypotheses for 3D Human Mesh and Pose Using Conditional Generative Adversarial Nets

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13844))

Included in the following conference series:

Abstract

Despite recent successes in 3D human mesh/pose recovery, the human mesh/pose reconstruction ambiguity is a challenging problem that can not be avoided as lighting, occlusion or self-occlusion in scenes happens. We argue that there could be multiple 3D human meshes corresponding a single image from a view point, because we really do not know what happens in extreme lighting or behind occlusion/self occlusion. In this paper, we address the problem using Conditional Generative Adversarial Nets (CGANs) to generate multiple hypotheses for 3D human mesh and pose from a single image under the condition of 2D joints and relative depth of adjacent joints. The initial estimation of 2D human skeletons, relative depth and features is taken as input of CGANs to train the generator and discriminator in the first stage. Then the generator of CGANs is used to generate multiple human meshes via different conditions which are consistent with human silhouette and 2D joint points in the second stage. Selecting and clustering are utilized to eliminate abnormal and redundant human meshes. The number of hypothesis is not unified for each single image, and it is dependent on 2D pose ambiguity. Unlike the existing end-to-end 3D human mesh recovery methods, our approach consists of three task-specific deep networks trained separately to mitigate the training burden in terms of time and datasets. Our approach has been evaluated not only on the datasets of laboratory and real scenes but also on Internet images qualitatively and quantitatively, and experimental results demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers (2005)

    Google Scholar 

  3. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3d human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  4. Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Neural 3D morphable models: spiral convolutional networks for 3d shape representation learning and generation. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  5. Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Pare: Part attention regressor for 3d human body estimation. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  6. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2021)

    Article  Google Scholar 

  7. Doersch, C., Zisserman, A.: Sim2real transfer learning for 3d human pose estimation: motion to the rescue. In: Advances in Neural Information Processing Systems (NIPS) (2019)

    Google Scholar 

  8. Dushyant, M., et al.: VNect: real-time 3d human pose estimation with a single RGB camera. ACM Trans. Graphics 36(4), 33–51 (2017)

    Google Scholar 

  9. Gabeur, V., Franco, J.S., Martin, X., Schmid, C., Rogez, G.: Moulding humans: Non-parametric 3D human shape estimation from single images. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  10. Jahangiri, E., Yuille, A.L.: Generating multiple diverse hypotheses for human 3D pose consistent with 2D joint detections. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  11. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: The British Machine Vision Conference (BMVC) (2010)

    Google Scholar 

  12. Johnson, S., Everingham, M.: Learning effective human pose estimation from inaccurate annotation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  13. Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  14. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  15. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  16. Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  17. Kocabas, M., Karagoz, S., Akbas, E.: Self-supervised learning of 3D human pose using multi-view geometry. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  18. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  19. Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  20. Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: Closing the loop between 3D and 2D human representations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  21. Li, C., Lee, G.H.: Generating multiple hypotheses for 3D human pose estimation with mixture density network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  22. Li, W., Liu, H., Tang, H., Wang, P., Gool, L.V.: Mhformer: multi-hypothesis transformer for 3D human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  23. Lin, T.V., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  24. Loper, M., Mahmood, N., Black, M.J.: Mosh: motion and shape capture from sparse markers. ACM Trans. Graphics 33(6), 1–13 (2014)

    Article  Google Scholar 

  25. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graphics 34(6), 1–16 (2015)

    Article  Google Scholar 

  26. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3d human pose in the wild using imus and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37

    Chapter  Google Scholar 

  27. Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: International Conference on 3D vision (3DV) (2017)

    Google Scholar 

  28. Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: International Conference on 3D Vision (3DV) (2017)

    Google Scholar 

  29. Mirza, M., S., O.: Conditional generative adversarial nets (2014). https://arxiv.org/abs/1411.1784

  30. Nikos Kolotouros, Georgios Pavlakos, D.J., Daniilidis, K.: Probabilistic modeling for human mesh recovery. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  31. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  32. Pavlakos, G., Kolotouros, N., Daniilidis, K.: Texturepose: supervising human mesh estimation with texture consistency. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  33. Pavlakos, G., Zhou, X., Daniilidis, K.: Ordinal depth supervision for 3d human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  34. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  35. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3d human pose and shape from a single color image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  36. Pishchulin, L., et al.: Deepcut: Joint subset partition and labeling for multi person pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  37. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. 36(6), 245 (2017)

    Article  Google Scholar 

  38. Song, J., Chen, X., Hilliges, O.: Human body model fitting by learned gradient descent. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 744–760. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_44

    Chapter  Google Scholar 

  39. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33

    Chapter  Google Scholar 

  40. Sun, Y., Ye, Y., Liu, W., Gao, W., Fu, Y., Mei, T.: Human mesh recovery from monocular images via a skeleton disentangled representation. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  41. Tan, F., Zhu, H., Cui, Z., Zhu, S., Pollefeys, M., Tan, P.: Self-supervised human depth estimation from monocular videos. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  42. Tripathi, S., Ranade1, S., Tyagi, A., Agrawal, A.: Posenet 3D Learning temporally consistent 3D human pose via knowledge distillation. In: International Conference on 3D Vision (IC3DV) (2020)

    Google Scholar 

  43. Varol, G., et al.: Bodynet: Volumetric inference of 3d human body shapes. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  44. Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M.J., Laptev, I., Schmid, C.: Learning from synthetic humans. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  45. Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: Posing face, body, and hands in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  46. Xu, Y., Zhu, S.C., Tung, T.: Denserac: Joint 3d pose and shape estimation by dense render-and-compare. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  47. Yu Sun, Qian Bao, W.L.Y.F.M.J.B., Mei, T.: Monocular, one-stage, regression of multiple 3d people. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  48. Zanfir, A., Marinoiu, E., Sminchisescu, C.: Monocular 3D pose and shape estimation of multiple people in natural scenes-the importance of multiple scene constraints. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  49. Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., Ding, Z.: 3D human pose estimation with spatial and temporal transformers. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  50. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  51. Zhu, H., Zuo, X., Wang, S., Cao, X., Yang, R.: Detailed human shape estimation from a single image by hierarchical mesh deformation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  52. Zuffi, S., Black, M.J.: The stitched puppet: A graphical model of 3d human shape and pose. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (NSFC No. 61971106). Authors would like to thank all reviewers for their valuable and meticulous comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, X., Zheng, Y., Yang, S. (2023). Generating Multiple Hypotheses for 3D Human Mesh and Pose Using Conditional Generative Adversarial Nets. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13844. Springer, Cham. https://doi.org/10.1007/978-3-031-26316-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26316-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26315-6

  • Online ISBN: 978-3-031-26316-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics