Abstract
Recently, 3D data generation problems have attracted more and more research attention and have been addressed through various approaches. However, most of them fail to generate objects with given desired categories and tend to produce hybrids of multiple types. Thus, this paper proposes a generative model for synthesizing high-quality point clouds with conditional information, which is called Point Cloud conditional Generative Adversarial Network (PC-cGAN). The generative model of the proposed PC-cGAN consists of two main components: a pre-generator to generate rough point clouds and a conditional modifier to refine the last outputs with specific categories. To improve the performance for multi-class conditional generation for point clouds, an improved tree-structured graph convolution network, called BranchGCN, is adopted to aggregate information from both ancestor and neighbor features. Experimental results demonstrate that the proposed PC-cGAN outperforms state-of-the-art GANs in terms of conventional distance metrics and novel latent metric, Frechet Point Distance, and avoids the intra-category hybridization problem and the unbalanced issue in generated sample distribution effectively. The results also show that PC-cGAN enables us to gain explicit control over the object category while maintaining good generation quality and diversity. The implementation of PC-cGAN is available at https://github.com/zlyang3/PC-cGAN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 40–49. PMLR (2018). https://proceedings.mlr.press/v80/achlioptas18a.html
Alexiou, E., Yang, N., Ebrahimi, T.: PointXR: a toolbox for visualization and subjective evaluation of point clouds in virtual reality. In: 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX). IEEE (2020). https://doi.org/10.1109/qomex48832.2020.9123121
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv e-prints arXiv:1701.07875 (2017)
Arshad, M.S., Beksi, W.J.: A progressive conditional generative adversarial network for generating dense and colored 3D point clouds (2020). https://doi.org/10.1109/3dv50981.2020.00081
Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014). http://arxiv.org/abs/1312.6203
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical report. arXiv:1512.03012, Stanford University – Princeton University – Toyota Technological Institute at Chicago (2015)
Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017). https://doi.org/10.1109/cvpr.2017.16
Choi, Y., Choi, M., Kim, M., Ha, J., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 8789–8797. Computer Vision Foundation/IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00916. http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
Feng, M., Zhang, L., Lin, X., Gilani, S.Z., Mian, A.: Point attention network for semantic segmentation of 3D point clouds. Pattern Recognit. 107, 107446 (2020). https://doi.org/10.1016/j.patcog.2020.107446
Goodfellow, I.J., et al.: Generative adversarial networks. CoRR abs/1406.2661 (2014). http://arxiv.org/abs/1406.2661
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R.R., Hu, S.-M.: PCT: point cloud transformer. Comput. Vis. Media 7(2), 187–199 (2021). https://doi.org/10.1007/s41095-021-0229-5
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp. 6626–6637 (2017). https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4396–4405 (2019). https://doi.org/10.1109/CVPR.2019.00453
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014). http://arxiv.org/abs/1312.6114
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings (2017). https://openreview.net/forum?id=SJU4ayYgl
Li, R.; Li, X.; Hui, K.-H.; Fu, C.-W.: SP-GAN: sphere-guided 3D shape generation and manipulation. In: ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 40. ACM (2021)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal, Canada, pp. 828–838 (2018). https://proceedings.neurips.cc/paper/2018/hash/f5f8590cd58a54e94377e6ae2eded4d9-Abstract.html
Lim, S., Shin, M., Paik, J.: Point cloud generation using deep local features for augmented and mixed reality contents. In: 2020 IEEE International Conference on Consumer Electronics (ICCE). IEEE (2020). https://doi.org/10.1109/icce46568.2020.9043081
Ma, K., Lu, F., Chen, X.: Robust planar surface extraction from noisy and semi-dense 3D point cloud for augmented reality. In: 2016 International Conference on Virtual Reality and Visualization (ICVRV). IEEE (2016). https://doi.org/10.1109/icvrv.2016.83
Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: a simple residual MLP framework. CoRR abs/2202.07123 (2022). https://arxiv.org/abs/2202.07123
Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR abs/1411.1784 (2014). http://arxiv.org/abs/1411.1784
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 5105–5114. Curran Associates Inc., Red Hook (2017)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016). http://arxiv.org/abs/1511.06434
Sagawa, H., Nagayoshi, H., Kiyomizu, H., Kurihara, T.: [POSTER] hands-free AR work support system monitoring work progress with point-cloud data processing. In: 2015 IEEE International Symposium on Mixed and Augmented Reality. IEEE (2015). https://doi.org/10.1109/ismar.2015.50
Sarmad, M., Lee, H.J., Kim, Y.M.: RL-GAN-net: a reinforcement learning agent controlled GAN network for real-time point cloud shape completion. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2019). https://doi.org/10.1109/cvpr.2019.00605
Shu, D., Park, S.W., Kwon, J.: 3D point cloud generative adversarial network based on tree structured graph convolutions. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE (2019). https://doi.org/10.1109/iccv.2019.00396
Singh, P., Sadekar, K., Raman, S.: TreeGCN-ED: encoding point cloud using a tree-structured graph network. CoRR abs/2110.03170 (2021)
Tredinnick, R., Broecker, M., Ponto, K.: Progressive feedback point cloud rendering for virtual reality display. In: 2016 IEEE Virtual Reality (VR). IEEE (2016). https://doi.org/10.1109/vr.2016.7504773
Triess, L.T., Bühler, A., Peter, D., Flohr, F.B., Zöllner, M.: Point cloud generation with continuous conditioning. In: International Conference on Artificial Intelligence and Statistics, AISTATS 2022, 28–30 March 2022, Virtual Event, pp. 4462–4481 (2022). https://proceedings.mlr.press/v151/triess22a.html
Valsesia, D., Fracastoro, G., Magli, E.: Learning localized generative models for 3D point clouds via graph convolution. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019 (2019). https://openreview.net/forum?id=SJeXSo09FQ
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 1–12 (2019). https://doi.org/10.1145/3326362
Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud completion with geometry-aware transformers. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, 10–17 October 2021, pp. 12478–12487 (2021). https://doi.org/10.1109/ICCV48922.2021.01227
Yu, Z., Zheng, X., Yang, Z., Lu, B., Li, X., Fu, M.: Interaction-temporal GCN: a hybrid deep framework for COVID-19 pandemic analysis. IEEE Open J. Eng. Med. Biol. 2, 97–103 (2021). https://doi.org/10.1109/ojemb.2021.3063890
Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 2018 International Conference on 3D Vision, 3DV 2018, Verona, Italy, 5–8 September 2018, pp. 728–737. IEEE Computer Society (2018). https://doi.org/10.1109/3DV.2018.00088
Zhao, H., Jiang, L., Jia, J., Torr, P.H.S., Koltun, V.: Point transformer. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, 10–17 October 2021, pp. 16239–16248. IEEE (2021). https://doi.org/10.1109/ICCV48922.2021.01595
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017). https://doi.org/10.1109/ICCV.2017.244
Acknowledgement
This work was supported by the National Natural Science Foundation of China (No. 61471229 and No. 61901116), the Natural Science Foundation of Guangdong Province (No. 2019A1515011950), the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515010789 and No. 2021A1515012289), and in part by the Key Field Projects of Colleges and Universities of Guangdong Province (No. 2020ZDZX3065), and in part by Shantou University Scientific Research Foundation for Talents under Grant NTF19031.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, Z., Chen, Y., Zheng, X., Chang, Y., Li, X. (2023). Conditional GAN for Point Cloud Generation. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13847. Springer, Cham. https://doi.org/10.1007/978-3-031-26293-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-26293-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26292-0
Online ISBN: 978-3-031-26293-7
eBook Packages: Computer ScienceComputer Science (R0)