Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Affective Multi-modal Conversational Agent for Non Intrusive Data Collection from Patients with Brain Diseases

  • Conference paper
  • First Online:
Chatbot Research and Design (CONVERSATIONS 2022)

Abstract

This paper presents Zenon, an affective, multi-modal conversational agent (chatbot) specifically designed for treatment of brain diseases like multiple sclerosis and stroke. Zenon collects information from patients in a non-intrusive way and records user sentiment using two different modalities: text and video. A user-friendly interface is designed to meet users’ needs and achieve an efficient conversation flow. What makes Zenon unique is the support of multiple languages, the combination of two information sources for tracking sentiment, and the deployment of a semantic knowledge graph that ensures machine-interpretable information exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://alamedaproject.eu/.

  2. 2.

    https://rasa.com/docs/rasa/2.x.

  3. 3.

    https://jmcauley.ucsd.edu/data/amazon/.

  4. 4.

    https://developers.google.com/ml-kit.

  5. 5.

    https://www.kaggle.com/datasets/msambare/fer2013.

  6. 6.

    https://www.kaggle.com/jafarhussain786/datasets.

  7. 7.

    https://unsplash.com/.

  8. 8.

    https://www.pexels.com/search/face/.

  9. 9.

    https://pixabay.com/vectors/.

  10. 10.

    https://www.tensorflow.org/lite.

References

  1. Agathangelou, P., Katakis, I.: Balancing between holistic and cumulative sentiment classification. Online Soc. Netw. Media 29, 100199 (2022)

    Article  Google Scholar 

  2. Alnashwan, R., Sorensen, H., O’Riordan, A., Hoare, C.: Multiclass sentiment classification of online health forums using both domain-independent and domain-specific features. In: Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, Austin, Texas, USA, pp. 75–83. ACM (2017)

    Google Scholar 

  3. Amato, F., Marrone, S., Moscato, V., Piantadosi, G., Picariello, A., Sansone, C.: Chatbots meet ehealth: automatizing healthcare. In: WAIAH@AI*IA (2017)

    Google Scholar 

  4. Anastasiadou, M., Alexiadis, A., Polychronidou, E., Votis, K., Tzovaras, D.: A prototype educational virtual assistant for diabetes management. In: 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA, pp. 999–1004. IEEE (2020)

    Google Scholar 

  5. Bagherzadeh, P., Bergler, S.: Multi-input recurrent independent mechanisms for leveraging knowledge sources: case studies on sentiment analysis and health text mining. In: Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pp. 108–118. Association for Computational Linguistics (2021)

    Google Scholar 

  6. Cai, Y., Zheng, W., Zhang, T., Li, Q., Cui, Z., Ye, J.: Video based emotion recognition using CNN and BRNN. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds.) CCPR 2016. CCIS, vol. 663, pp. 679–691. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-3005-5_56

    Chapter  Google Scholar 

  7. Chang, F.J., Tran, A.T., Hassner, T., Masi, I., Nevatia, R., Medioni, G.: Expnet: landmark-free, deep, 3D facial expressions (2018)

    Google Scholar 

  8. Cheatham, M., Pesquita, C.: Semantic data integration. In: Zomaya, A.Y., Sakr, S. (eds.) Handbook of Big Data Technologies, pp. 263–305. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49340-4_8

    Chapter  Google Scholar 

  9. Clark, L., et al.: What makes a good conversation? Challenges in designing truly conversational agents. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2019)

    Google Scholar 

  10. World Wide Web Consortium: SPARQL 1.1 overview (2013)

    Google Scholar 

  11. World Wide Web Consortium: RDF 1.1 concepts and abstract syntax (2014)

    Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database, pp. 248–255 (2009)

    Google Scholar 

  13. Diederich, S., Brendel, A., Morana, S., Kolbe, L.: On the design of and interaction with conversational agents: an organizing and assessing review of human-computer interaction research. J. Assoc. Inf. Syst. 23(1), 96–138 (2022)

    Google Scholar 

  14. Fan, Y., Lu, X., Li, D., Liu, Y.: Video-based emotion recognition using CNN-RNN and C3D hybrid networks. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction, pp. 445–450 (2016)

    Google Scholar 

  15. Gogate, U., Parate, A., Sah, S., Narayanan, S.: Real time emotion recognition and gender classification, pp. 138–143 (2020)

    Google Scholar 

  16. OWL Working Group: OWL 2 web ontology language document overview: W3C recommendation 27 October 2009 (2009)

    Google Scholar 

  17. Guo, Y., Wang, J., Wu, R., Li, Z., Sun, L.: Designing for trust: a set of design principles to increase trust in chatbot. CCF Trans. Pervasive Comput. Interact. 1–8 (2022)

    Google Scholar 

  18. Hommersom, A., et al.: MoSHCA - my mobile and smart health care assistant. In: 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), Lisbon, Portugal, pp. 188–192. IEEE (2013)

    Google Scholar 

  19. Hossain, M.S., Muhammad, G.: An audio-visual emotion recognition system using deep learning fusion for a cognitive wireless framework. IEEE Wirel. Commun. 26(3), 62–68 (2019)

    Article  Google Scholar 

  20. Hossain, M.S., Muhammad, G.: Emotion recognition using deep learning approach from audio-visual emotional big data. Inf. Fusion 49, 69–78 (2019)

    Article  Google Scholar 

  21. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv (2017)

    Google Scholar 

  22. Hu, Y., Qu, Y., Maus, A., Mutlu, B.: Polite or direct? Conversation design of a smart display for older adults based on politeness theory. In: CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2022)

    Google Scholar 

  23. Jelodar, H., Wang, Y., Orji, R., Huang, S.: Deep sentiment classification and topic discovery on novel coronavirus or COVID-19 online discussions: NLP using LSTM recurrent neural network approach. IEEE J. Biomed. Health Inform. 24(10), 2733–2742 (2020)

    Article  Google Scholar 

  24. Laranjo, L., et al.: Conversational agents in healthcare: a systematic review. J. Am. Med. Inform. Assoc. 25(9), 1248–1258 (2018)

    Article  Google Scholar 

  25. Maga-Nteve, C., et al.: A semantic technologies toolkit for bridging early diagnosis and treatment in brain diseases: report from the ongoing EU-funded research project ALAMEDA. In: Garoufallou, E., Ovalle-Perandones, M.-A., Vlachidis, A. (eds.) MTSR 2021. CCIS, vol. 1537, pp. 349–354. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98876-0_30

    Chapter  Google Scholar 

  26. Oh, K.J., Lee, D., Ko, B., Choi, H.J.: A chatbot for psychiatric counseling in mental healthcare service based on emotional dialogue analysis and sentence generation. In: 2017 18th IEEE International Conference on Mobile Data Management (MDM), Daejeon, South Korea, pp. 371–375. IEEE (2017)

    Google Scholar 

  27. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520. Computer Vision Foundation/IEEE Computer Society (2018)

    Google Scholar 

  28. Teixeira, M.S., Maran, V., Dragoni, M.: The interplay of a conversational ontology and AI planning for health dialogue management. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing, Virtual Event Republic of Korea, pp. 611–619. ACM (2021)

    Google Scholar 

  29. Wafa, H., Wolfe, C., Emmett, E., Roth, G., Johnson, C., Wang, Y.: Burden of stroke in Europe: thirty-year projections of incidence, prevalence, deaths, and disability-adjusted life years. Stroke 51, 2418–2427 (2020)

    Article  Google Scholar 

  30. Walker, T., et al.: Developing an intelligent virtual agent to stratify people with cognitive complaints: a comparison of human-patient and intelligent virtual agent-patient interaction. Dementia 19, 1173–1188 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This research received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No GA 101017558 (ALAMEDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Mathioudis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chira, C. et al. (2023). An Affective Multi-modal Conversational Agent for Non Intrusive Data Collection from Patients with Brain Diseases. In: Følstad, A., et al. Chatbot Research and Design. CONVERSATIONS 2022. Lecture Notes in Computer Science, vol 13815. Springer, Cham. https://doi.org/10.1007/978-3-031-25581-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25581-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25580-9

  • Online ISBN: 978-3-031-25581-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics