Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reactive Anticipatory Robot Skills with Memory

  • Conference paper
  • First Online:
Robotics Research (ISRR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 27))

Included in the following conference series:

  • 1434 Accesses

Abstract

Optimal control in robotics has been increasingly popular in recent years and has been applied in many applications involving complex dynamical systems. Closed-loop optimal control strategies include model predictive control (MPC) and time-varying linear controllers optimized through iLQR. However, such feedback controllers rely on the information of the current state, limiting the range of robotic applications where the robot needs to remember what it has done before to act and plan accordingly. The recently proposed system level synthesis (SLS) framework circumvents this limitation via a richer controller structure with memory. In this work, we propose to optimally design reactive anticipatory robot skills with memory by extending SLS to tracking problems involving nonlinear systems and nonquadratic cost functions. We showcase our method with two scenarios exploiting task precisions and object affordances in pick-and-place tasks in a simulated and a real environment with a 7-axis Franka Emika robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kamien, M.I., Schwartz, N.L.: Dynamic optimization: the calculus of variations and optimal control in economics and management. Courier Corporation (2012)

    Google Scholar 

  2. Bianchi, F.D., De Battista, H., Mantz, R.J.: Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, vol. 19. Springer, London (2007). https://doi.org/10.1007/1-84628-493-7

    Book  Google Scholar 

  3. Diehl, M., Bock, H., Diedam, H., Wieber, P.B.: Fast direct multiple shooting algorithms for optimal robot control. In: Diehl, M., Mombaur, K. (eds.) Fast Motions in Biomechanics and Robotics. Lecture Notes in Control and Information Sciences, vol. 340, pp. 65–93. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Duchaine, V., Bouchard, S., Gosselin, C.M.: Computationally efficient predictive robot control. IEEE/ASME Trans. Mechatron. 12(5), 570–578 (2007)

    Article  Google Scholar 

  5. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1620–1626 (2003)

    Google Scholar 

  6. Caron, S., Kheddar, A.: Multi-contact walking pattern generation based on model preview control of 3D com accelerations. In: Proceedings of the IEEE International Conference on Humanoid Robots (Humanoids), pp. 550–557 (2016)

    Google Scholar 

  7. Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.: On time optimization of centroidal momentum dynamics. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7 (2018)

    Google Scholar 

  8. Winkler, A.W., Bellicoso, C.D., Hutter, M., Buchli, J.: Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robot. Autom. Lett. (RA-L) 3(3), 1560–1567 (2018)

    Article  Google Scholar 

  9. Budhiraja, R., Carpentier, J., Mastalli, C., Mansard, N.: Differential dynamic programming for multi-phase rigid contact dynamics. In: Proceedings of the IEEE International Conference on Humanoid Robots (Humanoids), pp. 1–9 (2018)

    Google Scholar 

  10. Mayne, D.: Model predictive control: recent developments and future promise. Automatica 50(12), 2967–2986 (2014)

    Article  MathSciNet  Google Scholar 

  11. Koenemann, J., et al.: Whole-body model-predictive control applied to the HRP-2 humanoid. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3346–3351 (2015)

    Google Scholar 

  12. Wintz, N., Bohner, M.: Linear quadratic tracker on time scales. Int. J. Dyn. Syst. Differ. Equ. 3, 423–447 (2011)

    MathSciNet  Google Scholar 

  13. Li, W., Todorov, E.: Iterative linear quadratic regulator design for nonlinear biological movement systems. In: ICINCO, pp. 222–229 (2004)

    Google Scholar 

  14. Kleff, S., Meduri, A., Budhiraja, R., Mansard, N., Righetti, L.: High-frequency nonlinear model predictive control of a manipulator. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 7330–7336 (2021)

    Google Scholar 

  15. Neunert, M., Farshidian, F., Winkler, A.W., Buchli, J.: Trajectory optimization through contacts and automatic gait discovery for quadrupeds. IEEE Robot. Autom. Lett. 2(3), 1502–1509 (2017)

    Article  Google Scholar 

  16. Grandia, R., Farshidian, F., Ranftl, R., Hutter, M.: Feedback MPC for torque-controlled legged robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4730–4737 (2019)

    Google Scholar 

  17. Anderson, J., Doyle, J.C., Low, S.H., Matni, N.: System level synthesis. Annu. Rev. Control. 47, 364–393 (2019)

    Article  MathSciNet  Google Scholar 

  18. Deisenroth, M.P., Neumann, G., Peters, J.: A survey on policy search for robotics. Found. Trends Robot 2(1–2), 1–142 (2013)

    Google Scholar 

  19. Siekmann, J., Valluri, S., Dao, J., Bermillo, F., Duan, H., Fern, A., Hurst, J.: Learning memory-based control for human-scale bipedal locomotion. In: Proceedings of Robotics: Science and Systems (RSS) (2020)

    Google Scholar 

  20. Zhang, M., McCarthy, Z., Finn, C., Levine, S., Abbeel, P.: Learning deep neural network policies with continuous memory states. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 520–527 (2016)

    Google Scholar 

  21. Dean, S., Tu, S., Matni, N., Recht, B.: Safely learning to control the constrained linear quadratic regulator. In: American Control Conference (ACC), pp. 5582–5588 (2019)

    Google Scholar 

  22. Dean, S., Matni, N., Recht, B., Ye, V.: Robust guarantees for perception-based control. In: Proceedings of the 2nd Conference on Learning for Dynamics and Control. Proceedings of Machine Learning Research, vol. 120, pp. 350–360. PMLR (2020)

    Google Scholar 

  23. Jarin-Lipschitz, L., Li, R., Nguyen, T., Kumar, V., Matni, N.: Robust, perception based control with quadrotors. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7737–7743 (2020)

    Google Scholar 

  24. Ho, D.: A system level approach to discrete-time nonlinear systems. In: American Control Conference (ACC), pp. 1625–1630 (2020)

    Google Scholar 

  25. Yu, J., Ho, D.: Achieving performance and safety in large scale systems with saturation using a nonlinear system level synthesis approach. In: 2020 American Control Conference (ACC), pp. 968–973 (2020)

    Google Scholar 

  26. Calinon, S.: Gaussians on Riemannian manifolds: applications for robot learning and adaptive control. IEEE Robot. Autom. Mag. 27(2), 33–45 (2020)

    Article  Google Scholar 

  27. Howell, T.A., Cleac’h, S.L., Singh, S., Florence, P., Manchester, Z., Sindhwani, V.: Trajectory optimization with optimization-based dynamics. arXiv preprint arXiv:2109.04928 (2021)

Download references

Acknowledgements

We would like to thank the reviewers for their thoughtful remarks and suggestions. This work was supported in part by the European Commission’s Horizon 2020 Programme through the CoLLaboratE project (https://collaborate-project.eu/) under grant agreement 820767.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Girgin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 9651 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Girgin, H., Jankowski, J., Calinon, S. (2023). Reactive Anticipatory Robot Skills with Memory. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_30

Download citation

Publish with us

Policies and ethics