Nothing Special   »   [go: up one dir, main page]

Skip to main content

Safe, Occlusion-Aware Manipulation for Online Object Reconstruction in Confined Spaces

  • Conference paper
  • First Online:
Robotics Research (ISRR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 27))

Included in the following conference series:

Abstract

Recent work in robotic manipulation focuses on object retrieval in cluttered spaces under occlusion. Nevertheless, the majority of efforts lack an analysis of conditions for the completeness of the approaches or the methods apply only when objects can be removed from the workspace. This work formulates the general, occlusion-aware manipulation task, and focuses on safe object reconstruction in a confined space with in-place rearrangement. It proposes a framework that ensures safety with completeness guarantees. Furthermore, an algorithm, which is an instantiation of this abstract framework for monotone instances is developed and evaluated empirically by comparing against a random and a greedy baseline on randomly generated experiments in simulation. Even for cluttered scenes with realistic objects, the proposed algorithm significantly outperforms the baselines and maintains a high success rate across experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code and videos: https://sites.google.com/scarletmail.rutgers.edu/occlusion-manipulation.

  2. 2.

    Please refer to the Appendix for an analysis of object extraction. Appendix can be found at: https://arxiv.org/abs/2205.11719.

  3. 3.

    The proof can be found in the Appendix: https://arxiv.org/abs/2205.11719.

  4. 4.

    See Appendix for a detailed discussion: https://arxiv.org/abs/2205.11719.

  5. 5.

    In-place relocation refers to rearrangement of objects within the workspace, i.e., not utilizing buffer space for the rearrangement that is external to the workspace.

  6. 6.

    The details are included in the Appendix: https://arxiv.org/abs/2205.11719.

  7. 7.

    Code and videos: https://sites.google.com/scarletmail.rutgers.edu/occlusion-manipulation.

References

  1. J. Ahn, J. Lee, S. H. Cheong, C. Kim, and C. Nam. An integrated approach for determining objects to be relocated and their goal positions inside clutter for object retrieval. In ICRA, pages 6408–6414, 2021

    Google Scholar 

  2. W. Bejjani, W. C. Agboh, M. R. Dogar, and M. Leonetti. Occlusion-aware search for object retrieval in clutter. In IROS, pages 4678–4685, 2021

    Google Scholar 

  3. Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., Sukhatme, G.S.: Interactive perception: Leveraging action in perception and perception in action. IEEE TRO 33(6), 1273–1291 (2017)

    Google Scholar 

  4. B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and model set: Towards common benchmarks for manipulation research. In ICAR, pages 510–517, 2015

    Google Scholar 

  5. S. H. Cheong, B. Y. Cho, J. Lee, C. Kim, and C. Nam. Where to relocate?: Object rearrangement inside cluttered and confined environments for robotic manipulation. In ICRA, pages 7791–7797, 2020

    Google Scholar 

  6. D. Coleman, I. Sucan, S. Chitta, and N. Correll. Reducing the barrier to entry of complex robotic software: a moveit! case study. arXiv:1404.3785, 2014

  7. E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics and machine learning. http://pybullet.org, 2016-2021

  8. M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, D. Wang, R. Martín-Martín, A. Garg, S. Savarese, and K. Goldberg. Mechanical search: Multi-step retrieval of a target object occluded by clutter. In ICRA, pages 1614–1621, 2019

    Google Scholar 

  9. E. D. Demaine, S. P. Fekete, and R. J. Lang. Circle packing for origami design is hard. arXiv:1008.1224, 2010

  10. Dogar, M.R., Koval, M.C., Tallavajhula, A., Srinivasa, S.S.: Object search by manipulation. Autonomous Robots 36(1), 153–167 (2014)

    Article  Google Scholar 

  11. K. Gao, D. Lau, B. Huang, K. E. Bekris, and J. Yu. Fast high-quality tabletop rearrangement in bounded workspace. In ICRA, 2022

    Google Scholar 

  12. Garrett, C.R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L.P., Lozano-Pérez, T.: Integrated task and motion planning. Annual Review of Control, Robotics, and Autonomous Systems 4, 265–293 (2021)

    Article  Google Scholar 

  13. C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in belief space for partially observable task and motion problems. In ICRA, pages 5678–5684, 2020

    Google Scholar 

  14. M. Gupta, T. Rühr, M. Beetz, and G. S. Sukhatme. Interactive environment exploration in clutter. In IROS, pages 5265–5272, 2013

    Google Scholar 

  15. H. Huang, M. Danielczuk, C. M. Kim, L. Fu, Z. Tam, J. Ichnowski, A. Angelova, B. Ichter, and K. Goldberg. Mechanical search on shelves using a novel "bluction" tool. In 2022 International Conference on Robotics and Automation (ICRA), pages 6158–6164. IEEE, 2022

    Google Scholar 

  16. H. Huang, M. Dominguez-Kuhne, V. Satish, M. Danielczuk, K. Sanders, J. Ichnowski, A. Lee, A. Angelova, V. Vanhoucke, and K. Goldberg. Mechanical search on shelves using lateral access x-ray. In IROS, pages 2045–2052, 2020

    Google Scholar 

  17. K. Huang and T. Hermans. Building 3d object models during manipulation by reconstruction-aware trajectory optimization. arXiv:1905.03907, 2019

  18. K. N. Kumar, I. Essa, and S. Ha. Graph-based cluttered scene generation and interactive exploration using deep reinforcement learning. In ICRA, 2022

    Google Scholar 

  19. A. Kurenkov, J. Taglic, R. Kulkarni, M. Dominguez-Kuhne, A. Garg, R. Martín-Martín, and S. Savarese. Visuomotor mechanical search: Learning to retrieve target objects in clutter. In IROS, pages 8408–8414, 2020

    Google Scholar 

  20. J. K. Li, D. Hsu, and W. S. Lee. Act to see and see to act: Pomdp planning for objects search in clutter. In IROS, pages 5701–5707, 2016

    Google Scholar 

  21. Liu, Z., Liu, W., Qin, Y., Xiang, F., Gou, M., Xin, S., Roa, M.A., Calli, B., Su, H., Sun, Y., et al.: Ocrtoc: A cloud-based competition and benchmark for robotic grasping and manipulation. IEEE RA-L 7(1), 486–493 (2021)

    Google Scholar 

  22. S. Lu, R. Wang, Y. Miao, C. Mitash, and K. Bekris. Online model reconstruction and reuse for lifelong improvement of robot manipulation. In ICRA, 2022

    Google Scholar 

  23. Mitash, C., Shome, R., Wen, B., Boularias, A., Bekris, K.: Task-driven perception and manipulation for constrained placement of unknown objects. IEEE RA-L 5(4), 5605–5612 (2020)

    Google Scholar 

  24. Nam, C., Cheong, S.H., Lee, J., Kim, D.H., Kim, C.: Fast and resilient manipulation planning for object retrieval in cluttered and confined environments. IEEE TRO 37(5), 1539–1552 (2021)

    Google Scholar 

  25. R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In ISMAR, pages 127–136, 2011

    Google Scholar 

  26. T. Novkovic, R. Pautrat, F. Furrer, M. Breyer, R. Siegwart, and J. Nieto. Object finding in cluttered scenes using interactive perception. In ICRA, 2020

    Google Scholar 

  27. A. Price, L. Jin, and D. Berenson. Inferring occluded geometry improves performance when retrieving an object from dense clutter. In ISRR, 2019

    Google Scholar 

  28. A. H. Qureshi, A. Mousavian, C. Paxton, M. C. Yip, and D. Fox. Nerp: Neural rearrangement planning for unknown objects. In RSS, 2021

    Google Scholar 

  29. M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour. Manipulation planning among movable obstacles. In ICRA, pages 3327–3332, 2007

    Google Scholar 

  30. R. Wang, K. Gao, J. Yu, and K. Bekris. Lazy rearrangement planning in confined spaces. In ICAPS, 2022

    Google Scholar 

  31. R. Wang, Y. Miao, and K. E. Bekris. Efficient and high-quality prehensile rearrangement in cluttered and confined spaces. In ICRA, 2022

    Google Scholar 

  32. R. Wang, C. Mitash, S. Lu, D. Boehm, and K. E. Bekris. Safe and effective picking paths in clutter given discrete distributions of object poses. In IROS, 2020

    Google Scholar 

  33. Y. Xiao, S. Katt, A. ten Pas, S. Chen, and C. Amato. Online planning for target object search in clutter under partial observability. In ICRA, 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Bekris .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 6199 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miao, Y., Wang, R., Bekris, K. (2023). Safe, Occlusion-Aware Manipulation for Online Object Reconstruction in Confined Spaces. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_18

Download citation

Publish with us

Policies and ethics