Nothing Special   »   [go: up one dir, main page]

Skip to main content

BS-GAENets: Brain-Spatial Feature Learning Via a Graph Deep Autoencoder for Multi-modal Neuroimaging Analysis

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021)

Abstract

The obsession with how the brain and behavior are related is a challenge for cognitive neuroscience research, for which functional magnetic resonance imaging (fMRI) has significantly improved our understanding of brain functions and dysfunctions. In this paper, we propose a novel multi-modal spatial cerebral graph based on an attention mechanism called MSCGATE that combines both fMRI modalities: task-, and rest-fMRI based on spatial and cerebral features to preserve the rich complex structure between brain voxels. Moreover, it attempts to project the structural-functional brain connections into a new multi-modal latent representation space, which will subsequently be inputted to our trace regression predictive model to output each subject’s behavioral score. Experiments on the InterTVA dataset reveal that our proposed approach outperforms other graph representation learning-based models, in terms of effectiveness and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://openneuro.org/datasets/ds001771.

References

  1. Demirci, O., Clark, V.P., Magnotta, V.A., et al.: A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study. Brain Imaging Behav. 2(3), 207–226 (2008)

    Article  Google Scholar 

  2. Mihalik, A., Ferreira, F.S., Rosa, M.J., et al.: Brain-behaviour modes of covariation in healthy and clinically depressed young people. Sci. Rep. 9, 1–11 (2019)

    Article  Google Scholar 

  3. Sui, J., Adali, T., Yu, Q., et al.: A review of multivariate methods for multimodal fusion of brain imaging data. J. Neurosci. Methods 204(1), 68–81 (2012)

    Article  Google Scholar 

  4. Sui, J., Pearlson, G.D., et al.: In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia. Biol. Psychiat. 78(11), 794–804 (2015)

    Article  Google Scholar 

  5. Blackmon, K., Barr, W.B., Kuzniecky, R., et al.: Phonetically irregular word pronunciation and cortical thickness in the adult brain. Neuroimage 51(4), 1453–1458 (2010)

    Article  Google Scholar 

  6. Saygin, Z.M., Osher, D.E., et al.: Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 15(2), 321–327 (2012)

    Article  Google Scholar 

  7. Du, W., Calhoun, V.D., et al.: High classification accuracy for schizophrenia with rest and task FMRI data. Front. Hum. Neurosci. 6(145) (2012)

    Google Scholar 

  8. Hanachi, R., Sellami, A., Farah, I.: Interpretation of human behavior from multi-modal brain mri images based on graph deep neural networks and attention mechanism. In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications 4: VISAPP, pp. 56–66 (2021)

    Google Scholar 

  9. Jiang, J., Ma, J., Chen, C., et al.: SuperPCA: A superpixelwise pca approach for unsupervised feature extraction of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 56(8), 4581–4593 (2018)

    Article  Google Scholar 

  10. He, X., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood preserving embedding. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), pp. 1208–1213 (2005)

    Google Scholar 

  11. Ma, L., Crawford, M.M., Tian, J.: Anomaly detection for hyperspectral images based on robust locally linear embedding. J. Infrared Milli Terahz Waves 31, 753–762 (2010)

    Google Scholar 

  12. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  13. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk. In: Proceedings of the 20th ACM SIGKDD International Conference On Knowledge Discovery and Data Mining - KDD 2014 (2014)

    Google Scholar 

  14. Dong, Y., Chawla, N.V., Swami, A.: Metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2017), pp. 135–144. Association for Computing Machinery, New York (2017)

    Google Scholar 

  15. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp, 855–864. Association for Computing Machinery (2016)

    Google Scholar 

  16. Wu, Z., Pan, S., Chen, F., Long, G., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 1–21 (2020)

    Article  Google Scholar 

  17. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017), pp. 1025–1035. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  18. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: ICML, pp. 689–696 (2011)

    Google Scholar 

  19. Alam, M.T., Kumar, V., Kumar, A.: A Multi-view convolutional neural network approach for image data classification. In: 2021 International Conference on Communication information and Computing Technology (ICCICT), pp. 1–6 (2021)

    Google Scholar 

  20. Sun, C., Yuan, Y.-H., Li, Y., Qiang, J., Zhu, Y., Shen, X.: Multi-view fractional deep canonical correlation analysis for subspace clustering. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13109, pp. 206–215. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92270-2_18

    Chapter  Google Scholar 

  21. Bhatt, G., Jha, P., Raman, B.: Representation learning using step-based deep multi-modal autoencoders. Pattern Recogn. 95, 12–23 (2019)

    Article  Google Scholar 

  22. Khosla, M., Setty, V., Anand, A.: A comparative study for unsupervised network representation learning. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  23. Mikolov, T., Chen, K.: Greg Corrado. Efficient Estimation of Word Representations in Vector Space, Jeffrey Dean (2013)

    Google Scholar 

  24. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: A survey. CoRR (2018)

    Google Scholar 

  25. Kadri, H., Ayache, S., Huusari, R., Rakotomamonjy, A., Ralaivola, L.: Partial trace regression and low-rank kraus decomposition. In: International Conference on Machine Learning (2020)

    Google Scholar 

  26. Koltchinskii, V., Lounici, K., Tsybakov, A.B.: Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. Ann. Stat. 39(5), 2302–2329 (2011)

    Article  MATH  Google Scholar 

  27. Fan, J., Gong, W., Zhu, Z.: Generalized high dimensional trace regression via nuclear norm regularization. J. Econom. 212(1), 177–202 (2019)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refka Hanachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanachi, R., Sellami, A., Farah, I.R. (2023). BS-GAENets: Brain-Spatial Feature Learning Via a Graph Deep Autoencoder for Multi-modal Neuroimaging Analysis. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. Communications in Computer and Information Science, vol 1691. Springer, Cham. https://doi.org/10.1007/978-3-031-25477-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25477-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25476-5

  • Online ISBN: 978-3-031-25477-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics