Abstract
Medial descriptors have attracted increasing interest in image representation, simplification, and compression. Recently, such descriptors have been separately used to (a) increase the local quality of representing salient features in an image and (b) globally compress an entire image via a B-spline encoding. To date, the two desiderates, (a) high local quality and (b) high overall compression of images, have not been addressed by a single medial method. We achieve this integration by presenting Spatial Saliency Spline Dense Medial Descriptors (3S-DMD) for saliency-aware image simplification-and-compression. Our method significantly improves the trade-off between compression and image quality of earlier medial-based methods while keeping perceptually salient features. We also demonstrate the added-value of user-designed, as compared to automatically-computed, saliency maps. We show that our method achieves both higher compression and better quality than JPEG for a broad range of images and, for specific image types, yields higher compression and similar quality than JPEG 2000.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., Van Gool, L.: Generative adversarial networks for extreme learned image compression. In: ICCV, pp. 221–231 (2019)
Alaei, A., Raveaux, R., Conte, D.: Image quality assessment based on regions of interest. Signal Image Video Process. 11, 673–680 (2017)
Andrushia, A., Thangarjan, R.: Saliency-based image compression using Walsh and Hadamard transform. In: Lect Notes Comp Vision Biomech, pp. 21–42 (2018)
Attali, D., Montanvert, A.: Computing and simplifying 2D and 3D continuous skeletons. Comput. Vision Image Understand. 67(3), 261–273 (1997)
Ballard, F.: Better portable graphics (2018). https://bellard.org/bpg
Borji, A., Cheng, M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE TIP 24(12), 5706–22 (2015)
Cao, T.T., Tang, K., Mohamed, A., Tan, T.S.: Parallel banding algorithm to compute exact distance transform with the GPU. In: Proceedings ACM I3D, pp. 83–90 (2010)
Chen, T., Cheng, M., Tan, P., Shamir, A., Hu, S.: Sketch2photo: Internet image montage. ACM TOG 28(5) (2009)
Cheng, M.: MSRA10K salient object database (2014). mmcheng.net/msra10k
Cheng, M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.: Global contrast based salient region detection. IEEE TPAMI 37(3), 569–582 (2014)
Choi, Y., El-Khamy, M., Lee, J.: Variable rate deep image compression with a conditional autoencoder. ICCV pp. 3146–3154 (2019)
Daintith, J., Wright, E.: A Dictionary of Computing. Oxford Univ, Press (2008)
Eberly, D.: Least-squares fitting of data with B-spline curves (2014). geometric Tools. www.geometrictools.com/Documentation/BSplineCurveLeastSquaresFit.pdf
Engelke, U., Le Callet, P.: Perceived interest and overt visual attention in natural images. Image Commun. 39(PB), 386–404 (2015)
Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algorithms: a comparative survey. ACM Comput Surv 40(1), 1–44 (2008)
Falcão, A., Bragantini, J.: The role of optimum connectivity in image segmentation: can the algorithm learn object information during the process? In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol. 11414, pp. 180–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_15
Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE TPAMI 26, 19–29 (2004)
Goferman, S., Zelnik, L., Tal, A.: Context-aware saliency detection. IEEE TPAMI 34(10), 1915–1926 (2011)
Hesselink, W.H., Roerdink, J.B.T.M.: Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE TPAMI 30(12), 2204–2217 (2008)
Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: Uniqueness, focusness and objectness. In: Proceedings of the ICCV, pp. 1976–1983 (2013)
Kimmel, R., Shaked, D., Kiryati, N., Bruckstein, A.M.: Skeletonization via distance maps and level sets. CVIU 62(3), 382–391 (1995)
Kresch, R., Malah, D.: Skeleton-Based morphological coding of binary images. IEEE TIP 7(10), 1387–1399 (1998)
Lam, L., Lee, S., Suen, C.Y.: Thinning methodologies - a comprehensive survey. IEEE TPAMI 14(9), 869–885 (1992)
Le Callet, P., Niebur, E.: Visual attention and applications in multimedia technologies. Proc. IEEE 101(9), 2058–2067 (2013)
Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.: Saliency detection via dense and sparse reconstruction. In: Proceedings of the ICCV, pp. 2976–2983 (2013)
Liu, H., Engelke, U., Wang, J., Callet, Le, P., Heynderickx, I.: How does image content affect the added value of visual attention in objective image quality assessment? IEEE Signal Proc. Let. 20, 355–358 (2013)
Liu, H., Heynderickx, I.: Visual attention in objective image quality assessment: Based on eye-tracking data. IEEE TCSVT 21(7), 971–982 (2011)
Meijster, A., Roerdink, J., Hesselink, W.: A general algorithm for computing distance transforms in linear time. In: Proceedings ISMM, pp. 331–340 (2002)
de Melo Joao, L., de Castro Belem, F., Falcao, A.X.: Itself: Iterative saliency estimation flexible framework. Available at https://arxiv.org/abs/2006.16956 (2020)
Movahedi, V., Elder, J.: Design and perceptual validation of performance measures for salient object segmentation. In: IEEE Computer Society Conference (2010)
Ogniewicz, R., Kübler, O.: Hierarchical voronoi skeletons. Patt. Recogn. 28(3), 343–359 (1995)
Orzan, A., Bousseau, A., Barla, P., Winnemöller, H., Thollot, J., Salesin, D.: Diffusion curves: a vector representation for smooth-shaded images. Commun. ACM 56(7), 101–108 (2013)
Peng, H., Li, B., Ling, H., Hu, W., Xiong, W., Maybank, S.J.: Salient object detection via structured matrix decomposition. IEEE TPAMI 39(4), 818–832 (2016)
Piegl, L., Tiller, W.: The NURBS Book (2nd Ed.). Springer-Verlag (1997). https://doi.org/10.1007/978-3-642-59223-2
Pizer, S., Siddiqi, K., Székely, G., Damon, J., Zucker, S.: Multiscale medial loci and their properties. IJCV 55, 155–179 (2003)
Saha, P.K., Borgefors, G., Sanniti di Baja, G.: A survey on skeletonization algorithms and their applications. Patt. Recogn. Lett. 76, 3–12 (2016)
Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE TPAMI 38(4D) (2016)
Siddiqi, K., Pizer, S.: Medial representations: mathematics, algorithms and applications (1nd Ed.). Springer (2008). https://doi.org/10.1007/978-1-4020-8658-8
Taubman, D.S., Marcellin, M.W.: JPEG 2000: Image compression fundamentals, standards and practice. Kluwer Academic Publishers (2001)
Telea, A.: Feature preserving smoothing of shapes using saliency skeletons. In: Proc. VMLS, pp. 153–170 (2012)
Telea, A.: CUDASkel: real-time computation of exact Euclidean multiscale skeletons on CUDA (2019). webspace.science.uu.nl/\(\sim \)telea001/Shapes/CUDASkel
Telea, A., Wijk, van, J.: An augmented fast marching method for computing skeletons and centerlines. In: Eurographics, pp. 251–259 (2002)
Toderici, G., et al.: Variable rate image compression with recurrent neural networks. In: 4th ICLR (2016)
Wallace, G.K.: The JPEG still picture compression standard. IEEE TCE 38(1), xviii-xxxiv (1992)
Wang, H., Schuster, G.M., Katsaggelos, A.K., Pappas, T.N.: An efficient rate-distortion optimal shape coding approach utilizing a skeleton-based decomposition. IEEE TIP 12(10), 1181–1193 (2003)
Wang, J.: 3S-DMD supplementary material (2021). https://github.com/WangJieying/3S-DMD-resources
Wang, J., Kosinka, J., Telea, A.: Spline-based dense medial descriptors for lossy image compression. J. Imag. 7(8), 153 (2021)
Wang, J., Kosinka, J., Telea, A.: Spline-based medial axis transform representation of binary images. Comput. Graph. 98, 165–176 (2021)
Wang, J., de Melo Joao, L., Falcão, A., Kosinka, J., Telea, A.: Focus-and-context skeleton-based image simplification using saliency maps. In: Proceedings of the VISAPP, pp. 45–55. SciTePress (2021)
Wang, J., Terpstra, M., Kosinka, J., Telea, A.: Quantitative evaluation of dense skeletons for image compression. Information 11(5), 274 (2020)
Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H.: Salient object detection in the deep learning era: An in-depth survey. IEEE TPAMI PP (2021)
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13, 600–612 (2004)
Wang, Z., Bovik, A.: Mean squared error: Love it or leave it? a new look at signal fidelity measures. IEEE Signal Proc. Mag. 26, 98–117 (2009)
Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment. In: ACSSC, pp. 1398–1402 (2003)
Yushkevich, P., Thomas Fletcher, P., Joshi, S., Thall, A., Pizer, S.M.: Continuous medial representations for geometric object modeling in 2D and 3D. Image Vision Comput. 21(1), 17–27 (2003)
Zhang, J., et al.: Hypergraph optimization for salient region detection based on foreground and background queries. IEEE Access 6, 26729–267241 (2018)
Zhu, Y., Sun, F., Choi, Y.K., Jüttler, B., Wang, W.: Computing a compact spline representation of the medial axis transform of a 2D shape. Graphical Models 76(5), 252–262 (2014)
Zwan, M.V.D., Meiburg, Y., Telea, A.: A dense medial descriptor for image analysis. In: Proceedings of the VISAPP, pp. 285–293 (2013)
Zünd, F., Pritch, Y., Sorkine-Hornung, A., Mangold, S., Gross, T.: Content-aware compression using saliency-driven image retargeting. In: IEEE ICIP, pp. 1845–1849 (2013)
Acknowledgments
The first author acknowledges the China Scholarship Council (Grant number: 201806320354) for financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, J., Melo, L.d., Falcão, A.X., Kosinka, J., Telea, A. (2023). Spline-Based Dense Medial Descriptors for Image Simplification Using Saliency Maps. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. Communications in Computer and Information Science, vol 1691. Springer, Cham. https://doi.org/10.1007/978-3-031-25477-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-25477-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25476-5
Online ISBN: 978-3-031-25477-2
eBook Packages: Computer ScienceComputer Science (R0)