Abstract
Mobile health involves gathering smartphone-sensor data passively from user’s phones, as they live their lives ’In-the-wild”, periodically annotating data with health labels. Such data is used by machine learning models to predict health. Purely Computational approaches generally do not support interpretability of the results produced from such models. In addition, the interpretability of such results may become difficult with larger study cohorts which make population-level insights desirable. We propose Population Level Exploration and Analysis of smartphone DEtected Symptoms (PLEADES), an interactive visual analytics framework to present smartphone-sensed data. Our approach uses clustering and dimension reduction to discover similar days based on objective smartphone sensor data, across participants for population level analyses. PLEADES enables analysts to apply various clustering and projection algorithms to several smartphone-sensed datasets. PLEADES overlays human-labelled symptom and contextual information from in-the-wild collected smartphone-sensed data, to empower the analyst to interpret findings. Such views enable the contextualization of the symptoms that can manifest in smartphone sensor data. We used PLEADES to visualize two real world in-the-wild collected datasets with objective sensor data and human-provided health labels. We validate our approach through evaluations with data visualization and human context recognition experts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdullah, S., Murnane, E.L., Matthews, M., Choudhury, T.: Circadian computing: sensing, modeling, and maintaining biological rhythms. In: Rehg, J.M., Murphy, S.A., Kumar, S. (eds.) Mobile Health, pp. 35–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51394-2_3
Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D., Giannotti, F.: Interactive visual clustering of large collections of trajectories. In: 2009 IEEE Symposium on Visual Analytics Science and Technology, pp. 3–10. IEEE (2009)
van Berkel, N., Goncalves, J., Wac, K., Hosio, S., Cox, A.L.: Human accuracy in mobile data collection (2020)
Boudjeloud-Assala, L., Pinheiro, P., Blansché, A., Tamisier, T., Otjacques, B.: Interactive and iterative visual clustering. Inf. Vis. 15(3), 181–197 (2016)
Boukhechba, M., Chow, P., Fua, K., Teachman, B.A., Barnes, L.E.: Predicting social anxiety from global positioning system traces of college students: feasibility study. JMIR Mental Health 5(3), e10101 (2018)
Boukhechba, M., Daros, A.R., Fua, K., Chow, P.I., Teachman, B.A., Barnes, L.E.: Demonicsalmon: Monitoring mental health and social interactions of college students using smartphones. Smart Health 9, 192–203 (2018)
Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)
Cao, N., Lin, Y.R., Gotz, D., Du, F.: Z-glyph: Visualizing outliers in multivariate data. Inf. Vis. 17(1), 22–40 (2018). https://doi.org/10.1177/1473871616686635
Cashman, D., Perer, A., Chang, R., Strobelt, H.: Ablate, variate, and contemplate: Visual analytics for discovering neural architectures. IEEE Trans. Visual Comput. Graphics 26(1), 863–873 (2019)
Cavallo, M., Demiralp, Ç.: Clustrophile 2: Guided visual clustering analysis. IEEE Trans. Visual Comput. Graphics 25(1), 267–276 (2018)
Cavallo, M., Demiralp, Ç.: A visual interaction framework for dimensionality reduction based data exploration. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2018)
Chatzimparmpas, A., Martins, R.M., Kerren, A.: t-visne: Interactive assessment and interpretation of t-sne projections. IEEE Trans. Visual Comput. Graphics 26(8), 2696–2714 (2020)
Chatzimparmpas, A., Martins, R.M., Jusufi, I., Kerren, A.: A survey of surveys on the use of visualization for interpreting machine learning models. Inf. Vis. 19(3), 207–233 (2020)
Chen, C., Wu, R., Khan, H., Truong, K., Chevalier, F.: Vidde: Visualizations for helping people with copd interpret dyspnea during exercise. In: The 23rd International ACM SIGACCESS Conference on Computers and Accessibility, pp. 1–14 (2021)
Choe, E.K., Lee, B., Kay, M., Pratt, W., Kientz, J.A.: Sleeptight: low-burden, self-monitoring technology for capturing and reflecting on sleep behaviors. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 121–132 (2015)
Choe, E.K., Lee, B., Zhu, H., Riche, N.H., Baur, D.: Understanding self-reflection: how people reflect on personal data through visual data exploration. In: Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare, pp. 173–182 (2017)
Costa, G.: Shift work and health: current problems and preventive actions. Saf. Health Work 1(2), 112–123 (2010)
Davies, D., Bouldin, D.: A cluster separation measure. IEEE Trans. Patter Anal. Mach. Intell. (1979)
Demiralp, Ç.: Clustrophile: A tool for visual clustering analysis. arXiv preprint arXiv:1710.02173 (2017)
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226–231 (1996)
Fujiwara, T., Kwon, O.H., Ma, K.L.: Supporting analysis of dimensionality reduction results with contrastive learning. IEEE Trans. Visual Comput. Graphics 26(1), 45–55 (2019)
Gerych, W., Agu, E., Rundensteiner, E.: Classifying depression in imbalanced datasets using an autoencoder-based anomaly detection approach. In: 2019 IEEE 13th International Conference on Semantic Computing (ICSC), pp. 124–127. IEEE (2019)
Guo, P., Xiao, H., Wang, Z., Yuan, X.: Interactive local clustering operations for high dimensional data in parallel coordinates. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 97–104. IEEE (2010)
Guo, R., et al.: Comparative visual analytics for assessing medical records with sequence embedding. Visual Informat. 4(2), 72–85 (2020)
Gupta, A., Tong, X., Shaw, C., Li, L., Feehan, L.: FitViz: a personal informatics tool for self-management of rheumatoid arthritis. In: Stephanidis, C. (ed.) HCI 2017. CCIS, vol. 714, pp. 232–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58753-0_35
Harrington, J.M.: Health effects of shift work and extended hours of work. Occup. Environ. Med. 58(1), 68–72 (2001)
Harrower, M., Brewer, C.A.: Colorbrewer. org: an online tool for selecting colour schemes for maps. Cartographic J. 40(1), 27–37 (2003). https://doi.org/10.1179/000870403235002042
Heng, T.B., Gupta, A., Shaw, C.: Fitviz-ad: A non-intrusive reminder to encourage non-sedentary behaviour. Electron. Imaging 2018(1), 1–332 (2018)
Krueger, R., et al.: Birds-eye - large-scale visual analytics of city dynamics using social location data. Comput, Graphics Forum 38(3), 595–607 (2019). https://doi.org/10.1111/cgf.13713
Kwon, B.C., et al.: Clustervision: Visual supervision of unsupervised clustering. IEEE Trans. Visual Comput. Graphics 24(1), 142–151 (2017)
Li, J.K., et al.: A visual analytics framework for analyzing parallel and distributed computing applications. In: 2019 IEEE Visualization in Data Science (VDS), pp. 1–9. IEEE (2019)
Li, Y., Fujiwara, T., Choi, Y.K., Kim, K.K., Ma, K.L.: A visual analytics system for multi-model comparison on clinical data predictions. Visual Informat. 4(2), 122–131 (2020)
Liang, Y., Zheng, X., Zeng, D.D.: A survey on big data-driven digital phenotyping of mental health. Inf. Fusion 52, 290–307 (2019)
Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Madan, A., Cebrian, M., Moturu, S., Farrahi, K., et al.: Sensing the “health state’’ of a community. IEEE Pervasive Comput. 11(4), 36–45 (2011)
Mansoor, H., Gerych, W., Buquicchio, L., Chandrasekaran, K., Agu, E., Rundensteiner, E.: Comex: Identifying mislabeled human behavioral context data using visual analytics. In: 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), vol. 2 (2019). https://doi.org/10.1109/COMPSAC.2019.10212
Mansoor, H., Gerych, W., Buquicchio, L., Chandrasekaran, K., Agu, E., Rundensteiner, E.: Delfi: Mislabelled human context detection using multi-feature similarity linking. In: 2019 IEEE Visualization in Data Science (VDS) (2019). https://doi.org/10.1109/VDS48975.2019.8973382
Mansoor, H., et al.: Argus: Interactive visual analysis of disruptions in smartphone-detected bio-behavioral rhythms. Visual Informat. 5(3), 39–53 (2021)
Mansoor., H., et al.: Pleades: Population level observation of smartphone sensed symptoms for in-the-wild data using clustering. In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - IVAPP: IVAPP, vol. 3, pp. 64–75. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010204300640075
Mansoor, H., et al.: Visual analytics of smartphone-sensed human behavior and health. IEEE Comput. Graphics Appl. 41(3), 96–104 (2021)
Mead, A.: Review of the development of multidimensional scaling methods. J. Royal Stat. Soc. Ser. D (The Statistician) 41(1), 27–39 (1992)
Melcher, J., Hays, R., Torous, J.: Digital phenotyping for mental health of college students: a clinical review. Evid. Based Ment. Health 23(4), 161–166 (2020)
Mendes, E., Saad, L., McGeeny, K.: (2012). https://news.gallup.com/poll/154685/stay-home-moms-report-depression-sadness-anger.aspx
Mohr, D.C., Zhang, M., Schueller, S.M.: Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annu. Rev. Clin. Psychol. 13, 23–47 (2017)
Müller, S.R., Peters, H., Matz, S.C., Wang, W., Harari, G.M.: Investigating the relationships between mobility behaviours and indicators of subjective well-being using smartphone-based experience sampling and gps tracking. Eur. J. Pers. 34(5), 714–732 (2020)
Pu, J., Xu, P., Qu, H., Cui, W., Liu, S., Ni, L.: Visual analysis of people’s mobility pattern from mobile phone data. In: Proceedings of the 2011 Visual Information Communication-International Symposium, p. 13. ACM (2011)
Ravesloot, C., et al.: Why stay home? temporal association of pain, fatigue and depression with being at home. Disabil. Health J. 9(2), 218–225 (2016)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
Saeb, S., et al.: Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. J. Med. Internet Res. 17(7), e175 (2015)
Senaratne, H., et al.: Urban mobility analysis with mobile network data: a visual analytics approach. IEEE Trans. Intell. Transp. Syst. 19(5), 1537–1546 (2017)
Shen, Z., Ma, K.L.: Mobivis: A visualization system for exploring mobile data. In: 2008 IEEE Pacific Visualization Symposium, pp. 175–182. IEEE (2008)
Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343. IEEE (1996)
Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Torquati, L., Mielke, G.I., Brown, W.J., Burton, N.W., Kolbe-Alexander, T.L.: Shift work and poor mental health: a meta-analysis of longitudinal studies. Am. J. Public Health 109(11), e13–e20 (2019)
Vaizman, Y., Ellis, K., Lanckriet, G., Weibel, N.: Extrasensory app: Data collection in-the-wild with rich user interface to self-report behavior. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018)
Van Berkel, N., Ferreira, D., Kostakos, V.: The experience sampling method on mobile devices. ACM Comput. Surv. (CSUR) 50(6), 1–40 (2017)
Vetter, C.: Circadian disruption: What do we actually mean? Euro. J. Neurosc.(2018)
Wang, R., et al.: Studentlife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In: Proceedings of the 2014 ACM International Joint Conference On Pervasive And Ubiquitous Computing, pp. 3–14 (2014)
Wang, W., et al.: Social sensing: Assessing social functioning of patients living with schizophrenia using mobile phone sensing. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2020)
Wenskovitch, J., Dowling, M., North, C.: With respect to what? simultaneous interaction with dimension reduction and clustering projections. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 177–188 (2020)
Wenskovitch, J., North, C.: Pollux: Interactive cluster-first projections of high-dimensional data. In: 2019 IEEE Visualization in Data Science (VDS), pp. 38–47. IEEE (2019)
Wenskovitch Jr., J.E.: Dimension Reduction and Clustering for Interactive Visual Analytics. Ph.D. thesis, Virginia Tech (2019)
Weston, G., Zilanawala, A., Webb, E., Carvalho, L.A., McMunn, A.: Long work hours, weekend working and depressive symptoms in men and women: findings from a uk population-based study. J. Epidemiol. Community Health 73(5), 465–474 (2019)
Zhao, Y., et al.: Visual analytics for health monitoring and risk management in CARRE. In: El Rhalibi, A., Tian, F., Pan, Z., Liu, B. (eds.) Edutainment 2016. LNCS, vol. 9654, pp. 380–391. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40259-8_33
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Mansoor, H. et al. (2023). Exploratory Data Analysis of Population Level Smartphone-Sensed Data. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. Communications in Computer and Information Science, vol 1691. Springer, Cham. https://doi.org/10.1007/978-3-031-25477-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-25477-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25476-5
Online ISBN: 978-3-031-25477-2
eBook Packages: Computer ScienceComputer Science (R0)