Nothing Special   »   [go: up one dir, main page]

Skip to main content

Digital Twin Application to Energy Consumption Management in Production: A Literature Review

  • Conference paper
  • First Online:
Product Lifecycle Management. PLM in Transition Times: The Place of Humans and Transformative Technologies (PLM 2022)

Abstract

Economic and environmental issues that translate into energy costs and contaminations in production are growingly attracting attention from several parts and actors. Therefore, Energy Consumption Management (ECM) is gaining ever higher importance within production environments. Industry 4.0 provides several opportunities to address these challenges. One of the technologies presenting the best potentialities is the Digital Twin (DT), which has been found able to promote ECM improvements related to production assets and processes in different ways. Nonetheless, in the academic literature has not been found an extensive review of DT application to ECM in manufacturing. Therefore, this paper proposes a systematic literature review to investigate the current state of the art of the applications, features and characteristics, and implementation strategies of DT applied to ECM in production contexts. Attention has been also paid to the human role inside the application of the DT technology to ECM and the interaction modalities between humans and the DT itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Da Xu, L., Xu, E.L., Li, L.: Industry 4.0: state of the art and future trends. Int. J. Prod. Res. 56(8), 2941–2962 (2018). https://doi.org/10.1080/00207543.2018.1444806

    Article  Google Scholar 

  2. Vaidya, S., Ambad, P., Bhosle, S.: Industry 4.0 - a Glimpse. Procedia Manuf. 20, 233–238 (2018). https://doi.org/10.1016/j.promfg.2018.02.034

    Article  Google Scholar 

  3. Stock, T., Seliger, G.: Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP 40(lcc), 536–541 (2016). https://doi.org/10.1016/j.procir.2016.01.129

    Article  Google Scholar 

  4. Liang, Y.C., Lu, X., Li, W.D., Wang, S.: Cyber physical system and big data enabled energy efficient machining optimisation. J. Clean. Prod. 187, 46–62 (2018). https://doi.org/10.1016/j.jclepro.2018.03.149

    Article  Google Scholar 

  5. Shrouf, F., Miragliotta, G.: Energy management based on internet of things: practices and framework for adoption in production management. J. Clean. Prod. 100, 235–246 (2015). https://doi.org/10.1016/j.jclepro.2015.03.055

    Article  Google Scholar 

  6. Ma, S., Zhang, Y., Liu, Y., Yang, H., Lv, J., Ren, S.: Data-driven sustainable intelligent manufacturing based on demand response for energy-intensive industries. J. Clean. Prod. 274, 123155 (2020). https://doi.org/10.1016/j.jclepro.2020.123155

    Article  Google Scholar 

  7. Biesinger, F., Meike, D., Kraß, B., Weyrich, M.: A digital twin for production planning based on cyber-physical systems: a case study for a cyber-physical system-based creation of a digital twin. Procedia CIRP 79, 355–360 (2019). https://doi.org/10.1016/j.procir.2019.02.087

    Article  Google Scholar 

  8. Rocca, R., Rosa, P., Sassanelli, C., Fumagalli, L., Terzi, S.: Integrating virtual reality and digital twin in circular economy practices: a laboratory application case. Sustain. 12(6), 2286 (2020). https://doi.org/10.3390/su12062286

    Article  Google Scholar 

  9. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474

    Article  Google Scholar 

  10. Zhang, M., Zuo, Y., Tao, F.: Equipment energy consumption management in applications. In: 2018 IEEE 15th International Conference on Networking, Sensing and Control, pp. 1–5 (2018)

    Google Scholar 

  11. Cimino, C., Negri, E., Fumagalli, L.: Review of digital twin applications in manufacturing. Comput. Ind. 113, 103130 (2019). https://doi.org/10.1016/j.compind.2019.103130

    Article  Google Scholar 

  12. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 94(9–12), 3563–3576 (2017). https://doi.org/10.1007/s00170-017-0233-1

    Article  Google Scholar 

  13. Denyer, D., Tranfield, D.: Producing a systematic review. In: The Sage Handbook of Organizational Research Methods, pp. 671–689. Sage Publications Ltd. (2009)

    Google Scholar 

  14. Peter, O.A., Anastasia, S.D., Muzalevskii, A.R.: The implementation of smart factory for product inspection and validation a step by step guide to the implementation of the virtual plant of a smart factory using digital twin. In: 2021 10th Mediterranean Conference on Embedded Computing, MECO 2021, pp. 7–10 (2021). https://doi.org/10.1109/MECO52532.2021.9460140

  15. Tong, X., Liu, Q., Pi, S., Xiao, Y.: Real-time machining data application and service based on IMT digital twin. J. Intell. Manuf. 31(5), 1113–1132 (2019). https://doi.org/10.1007/s10845-019-01500-0

    Article  Google Scholar 

  16. Schmetz, A., et al.: Evaluation of industry 4.0 data formats for digital twin of optical components. Int. J. Precis. Eng. Manuf.-Green Technol. 7(3), 573–584 (2020). https://doi.org/10.1007/s40684-020-00196-5

    Article  Google Scholar 

  17. Arkouli, Z., Aivaliotis, P., Makris, S.: Towards accurate robot modelling of flexible robotic manipulators. Procedia CIRP 97, 497–501 (2020). https://doi.org/10.1016/j.procir.2020.07.009

    Article  Google Scholar 

  18. Soares, R.M., Câmara, M.M., Feital, T., Pinto, J.C.: Digital twin for monitoring of industrial multi-effect evaporation. Processes 7(8), 1–14 (2019). https://doi.org/10.3390/PR7080537

    Article  Google Scholar 

  19. Barni, A., Fontana, A., Menato, S., Sorlini, M., Canetta, L.: Exploiting the digital twin in the assessment and optimization of sustainability performances. In: 9th International Conference on Intelligent Systems 2018: Theory, Research and Innovation in Applications, IS 2018 - Proceedings, pp. 706–713 (2018). https://doi.org/10.1109/IS.2018.8710554

  20. Pacaux-Lemoine, M.-P., Berdal, Q., Guérin, C., Rauffet, P., Chauvin, C., Trentesaux, D.: Designing human–system cooperation in industry 4.0 with cognitive work analysis: a first evaluation. Cogn. Technol. Work 24(1), 93–111 (2021). https://doi.org/10.1007/s10111-021-00667-y

    Article  Google Scholar 

  21. Bermeo-Ayerbe, M.A., Ocampo-Martinez, C., Diaz-Rozo, J.: Data-driven energy prediction modeling for both energy efficiency and maintenance in smart manufacturing systems. Energy 238, 121691 (2022). https://doi.org/10.1016/j.energy.2021.121691

    Article  Google Scholar 

  22. Trauer, J., Pfingstl, S., Finsterer, M., Zimmermann, M.: Improving production efficiency with a digital twin based on anomaly detection. Sustainability 13(18), 10155 (2021). https://doi.org/10.3390/su131810155

    Article  Google Scholar 

  23. Bányai, Á.: Energy consumption-based maintenance policy optimization. Energies 14(18), 5674 (2021). https://doi.org/10.3390/en14185674

    Article  Google Scholar 

  24. Kohne, T., Theisinger, L., Scherff, J., Weigold, M.: Correction to: data and optimization model of an industrial heat transfer station to increase energy flexibility. Energy Inform. 4(3), 1–17 (2021). https://doi.org/10.1186/s42162-021-00179-z

    Article  Google Scholar 

  25. Wang, J.F., Huang, Y.Q., Tang, D.L.: A digital twin simulator for real time energy saving control of serial manufacturing system. In: 2021 IEEE International Conference on Real-time Computing and Robotics, RCAR 2021, pp. 720–725 (2021). https://doi.org/10.1109/RCAR52367.2021.9517579

  26. Pires, F., Ahmad, B., Moreira, A.P., Leitao, P.: Digital twin based what-if simulation for energy management. In: Proceedings of the 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS 2021, pp. 309–314 (2021). https://doi.org/10.1109/ICPS49255.2021.9468224

  27. Teng, S.Y., Touš, M., Leong, W.D., How, B.S., Lam, H.L., Máša, V.: Recent advances on industrial data-driven energy savings: digital twins and infrastructures. Renew. Sustain. Energy Rev. 135(February), 2021 (2020). https://doi.org/10.1016/j.rser.2020.110208

    Article  Google Scholar 

  28. Park, K.T., Lee, D., Noh, S.D.: Operation procedures of a work-center-level digital twin for sustainable and smart manufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 7(3), 791–814 (2020). https://doi.org/10.1007/s40684-020-00227-1

    Article  Google Scholar 

  29. Wang, Y., Wang, S., Yang, B., Zhu, L., Liu, F.: Big data driven hierarchical digital twin predictive remanufacturing paradigm: architecture, control mechanism, application scenario and benefits. J. Clean. Prod. 248, 119299 (2020). https://doi.org/10.1016/j.jclepro.2019.119299

    Article  Google Scholar 

  30. Wang, W., Zhang, Y., Zhong, R.Y.: A proactive material handling method for CPS enabled shop-floor. Robot. Comput. Integr. Manuf. 61(July 2019), 101849 (2020). https://doi.org/10.1016/j.rcim.2019.101849

    Article  Google Scholar 

  31. Zhou, H., Yang, C., Sun, Y.: A collaborative optimization strategy for energy reduction in ironmaking digital twin. IEEE Access 8, 177570–177579 (2020). https://doi.org/10.1109/ACCESS.2020.3027544

    Article  Google Scholar 

  32. Senna, P.P., Almeida, A.H., Barros, A.C., Bessa, R.J., Azevedo, A.L.: Architecture model for a holistic and interoperable digital energy management platform. Procedia Manuf. 51(2019), 1117–1124 (2020). https://doi.org/10.1016/j.promfg.2020.10.157

    Article  Google Scholar 

  33. Cardin, O., et al.: Energy-aware resources in digital twin: the case of injection moulding machines. In: Borangiu, T., Trentesaux, D., Leitão, P., Giret Boggino, A., Botti, V. (eds.) SOHOMA 2019. SCI, vol. 853, pp. 183–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27477-1_14

    Chapter  Google Scholar 

  34. Lima, F., Massote, A.A., Maia, R.F.: IoT energy retrofit and the connection of legacy machines inside the industry 4.0 concept. In: IECON Proceedings of the Industrial Electronics Conference, vol. 2019-Octob, pp. 5499–5504 (2019). https://doi.org/10.1109/IECON.2019.8927799

  35. Wang, J., Huang, Y., Chang, Q., Li, S.: Event-driven online machine state decision for energy-efficient manufacturing system based on digital twin using max-plus algebra. Sustain. 11(18), 5036 (2019). https://doi.org/10.3390/su11185036

    Article  Google Scholar 

  36. Gupta, A., Basu, B.: Sustainable primary aluminium production: technology status and future opportunities. Trans. Indian Inst. Met. 72(8), 2135–2150 (2019). https://doi.org/10.1007/s12666-019-01699-9

    Article  Google Scholar 

  37. Wanner, J., Bahr, J., Full, J., Weeber, M., Birke, K.P., Sauer, A.: Technology assessment for digitalization in battery cell manufacturing. Procedia CIRP 99, 520–525 (2021). https://doi.org/10.1016/j.procir.2021.03.110

    Article  Google Scholar 

  38. Leiden, A., Herrmann, C., Thiede, S.: Cyber-physical production system approach for energy and resource efficient planning and operation of plating process chains. J. Clean. Prod. 280, 125160 (2021). https://doi.org/10.1016/j.jclepro.2020.125160

    Article  Google Scholar 

  39. Assad, F., Konstantinov, S., Ahmad, M.H., Rushforth, E.J., Harrison, R.: Utilising web-based digital twin to promote assembly line sustainability. In: Proceedings of the 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS 2021, pp. 381–386 (2021). https://doi.org/10.1109/ICPS49255.2021.9468209

  40. Negri, E., Assiro, G., Caioli, L., Fumagalli, L.: A machine state-based digital twin development methodology. Proc. Summer Sch. Fr. Turco 1, 34–40 (2019)

    Google Scholar 

  41. Kannan, K., Arunachalam, N.: A digital twin for grinding wheel: an information sharing platform for sustainable grinding process. J. Manuf. Sci. Eng. Trans. ASME 141(2) (2019). doi: https://doi.org/10.1115/1.4042076

  42. Park, K.T., Im, S.J., Kang, Y.S., Do Noh, S., Kang, Y.T., Yang, S.G.: Service-oriented platform for smart operation of dyeing and finishing industry. Int. J. Comput. Integr. Manuf. 32(3), 307–326 (2019). https://doi.org/10.1080/0951192X.2019.1572225

    Article  Google Scholar 

  43. Karanjkar, N., Joglekar, A., Mohanty, S., Prabhu, V., Raghunath, D., Sundaresan, R.: Digital twin for energy optimization in an SMT-PCB assembly line. In: Proceedings of the 2018 IEEE International Conference on Internet Things Intelligent Systems, IOTAIS 2018, pp. 85–89 (2019). https://doi.org/10.1109/IOTAIS.2018.8600830

  44. Yan, K., Xu, W., Yao, B., Zhou, Z., Pham, D.T.: Digital twin-based energy modeling of industrial robots. In: Li, L., Hasegawa, K., Tanaka, S. (eds.) AsiaSim 2018. CCIS, vol. 946, pp. 333–348. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2853-4_26

    Chapter  Google Scholar 

  45. Zečević, N.: Energy intensification of steam methane reformer furnace in ammonia production by application of digital twin concept. Int. J. Sustain. Energy 41(1), 12–28 (2022). https://doi.org/10.1080/14786451.2021.1893727

    Article  Google Scholar 

  46. Karandaev, A.S., Gasiyarov, V.R., Radionov, A.A., Loginov, B.M.: Development of digital models of interconnected electrical profiles for rolling–drawing wire mills. Machines 9(3), 1–28 (2021). https://doi.org/10.3390/machines9030054

    Article  Google Scholar 

  47. Vatankhah Barenji, A., Liu, X., Guo, H., Li, Z.: A digital twin-driven approach towards smart manufacturing: reduced energy consumption for a robotic cell. Int. J. Comput. Integr. Manuf. 34(7–8), 844–859 (2021). https://doi.org/10.1080/0951192X.2020.1775297

    Article  Google Scholar 

  48. Lu, Y., Liu, C., Wang, K.I.K., Huang, H., Xu, X.: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 61(November), 101837 (2020). https://doi.org/10.1016/j.rcim.2019.101837

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Perossa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perossa, D., Santacruz, R.F.B., Rocca, R., Fumagalli, L. (2023). Digital Twin Application to Energy Consumption Management in Production: A Literature Review. In: Noël, F., Nyffenegger, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. PLM in Transition Times: The Place of Humans and Transformative Technologies. PLM 2022. IFIP Advances in Information and Communication Technology, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-031-25182-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25182-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25181-8

  • Online ISBN: 978-3-031-25182-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics