Abstract
Economic and environmental issues that translate into energy costs and contaminations in production are growingly attracting attention from several parts and actors. Therefore, Energy Consumption Management (ECM) is gaining ever higher importance within production environments. Industry 4.0 provides several opportunities to address these challenges. One of the technologies presenting the best potentialities is the Digital Twin (DT), which has been found able to promote ECM improvements related to production assets and processes in different ways. Nonetheless, in the academic literature has not been found an extensive review of DT application to ECM in manufacturing. Therefore, this paper proposes a systematic literature review to investigate the current state of the art of the applications, features and characteristics, and implementation strategies of DT applied to ECM in production contexts. Attention has been also paid to the human role inside the application of the DT technology to ECM and the interaction modalities between humans and the DT itself.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Da Xu, L., Xu, E.L., Li, L.: Industry 4.0: state of the art and future trends. Int. J. Prod. Res. 56(8), 2941–2962 (2018). https://doi.org/10.1080/00207543.2018.1444806
Vaidya, S., Ambad, P., Bhosle, S.: Industry 4.0 - a Glimpse. Procedia Manuf. 20, 233–238 (2018). https://doi.org/10.1016/j.promfg.2018.02.034
Stock, T., Seliger, G.: Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP 40(lcc), 536–541 (2016). https://doi.org/10.1016/j.procir.2016.01.129
Liang, Y.C., Lu, X., Li, W.D., Wang, S.: Cyber physical system and big data enabled energy efficient machining optimisation. J. Clean. Prod. 187, 46–62 (2018). https://doi.org/10.1016/j.jclepro.2018.03.149
Shrouf, F., Miragliotta, G.: Energy management based on internet of things: practices and framework for adoption in production management. J. Clean. Prod. 100, 235–246 (2015). https://doi.org/10.1016/j.jclepro.2015.03.055
Ma, S., Zhang, Y., Liu, Y., Yang, H., Lv, J., Ren, S.: Data-driven sustainable intelligent manufacturing based on demand response for energy-intensive industries. J. Clean. Prod. 274, 123155 (2020). https://doi.org/10.1016/j.jclepro.2020.123155
Biesinger, F., Meike, D., Kraß, B., Weyrich, M.: A digital twin for production planning based on cyber-physical systems: a case study for a cyber-physical system-based creation of a digital twin. Procedia CIRP 79, 355–360 (2019). https://doi.org/10.1016/j.procir.2019.02.087
Rocca, R., Rosa, P., Sassanelli, C., Fumagalli, L., Terzi, S.: Integrating virtual reality and digital twin in circular economy practices: a laboratory application case. Sustain. 12(6), 2286 (2020). https://doi.org/10.3390/su12062286
Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474
Zhang, M., Zuo, Y., Tao, F.: Equipment energy consumption management in applications. In: 2018 IEEE 15th International Conference on Networking, Sensing and Control, pp. 1–5 (2018)
Cimino, C., Negri, E., Fumagalli, L.: Review of digital twin applications in manufacturing. Comput. Ind. 113, 103130 (2019). https://doi.org/10.1016/j.compind.2019.103130
Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 94(9–12), 3563–3576 (2017). https://doi.org/10.1007/s00170-017-0233-1
Denyer, D., Tranfield, D.: Producing a systematic review. In: The Sage Handbook of Organizational Research Methods, pp. 671–689. Sage Publications Ltd. (2009)
Peter, O.A., Anastasia, S.D., Muzalevskii, A.R.: The implementation of smart factory for product inspection and validation a step by step guide to the implementation of the virtual plant of a smart factory using digital twin. In: 2021 10th Mediterranean Conference on Embedded Computing, MECO 2021, pp. 7–10 (2021). https://doi.org/10.1109/MECO52532.2021.9460140
Tong, X., Liu, Q., Pi, S., Xiao, Y.: Real-time machining data application and service based on IMT digital twin. J. Intell. Manuf. 31(5), 1113–1132 (2019). https://doi.org/10.1007/s10845-019-01500-0
Schmetz, A., et al.: Evaluation of industry 4.0 data formats for digital twin of optical components. Int. J. Precis. Eng. Manuf.-Green Technol. 7(3), 573–584 (2020). https://doi.org/10.1007/s40684-020-00196-5
Arkouli, Z., Aivaliotis, P., Makris, S.: Towards accurate robot modelling of flexible robotic manipulators. Procedia CIRP 97, 497–501 (2020). https://doi.org/10.1016/j.procir.2020.07.009
Soares, R.M., Câmara, M.M., Feital, T., Pinto, J.C.: Digital twin for monitoring of industrial multi-effect evaporation. Processes 7(8), 1–14 (2019). https://doi.org/10.3390/PR7080537
Barni, A., Fontana, A., Menato, S., Sorlini, M., Canetta, L.: Exploiting the digital twin in the assessment and optimization of sustainability performances. In: 9th International Conference on Intelligent Systems 2018: Theory, Research and Innovation in Applications, IS 2018 - Proceedings, pp. 706–713 (2018). https://doi.org/10.1109/IS.2018.8710554
Pacaux-Lemoine, M.-P., Berdal, Q., Guérin, C., Rauffet, P., Chauvin, C., Trentesaux, D.: Designing human–system cooperation in industry 4.0 with cognitive work analysis: a first evaluation. Cogn. Technol. Work 24(1), 93–111 (2021). https://doi.org/10.1007/s10111-021-00667-y
Bermeo-Ayerbe, M.A., Ocampo-Martinez, C., Diaz-Rozo, J.: Data-driven energy prediction modeling for both energy efficiency and maintenance in smart manufacturing systems. Energy 238, 121691 (2022). https://doi.org/10.1016/j.energy.2021.121691
Trauer, J., Pfingstl, S., Finsterer, M., Zimmermann, M.: Improving production efficiency with a digital twin based on anomaly detection. Sustainability 13(18), 10155 (2021). https://doi.org/10.3390/su131810155
Bányai, Á.: Energy consumption-based maintenance policy optimization. Energies 14(18), 5674 (2021). https://doi.org/10.3390/en14185674
Kohne, T., Theisinger, L., Scherff, J., Weigold, M.: Correction to: data and optimization model of an industrial heat transfer station to increase energy flexibility. Energy Inform. 4(3), 1–17 (2021). https://doi.org/10.1186/s42162-021-00179-z
Wang, J.F., Huang, Y.Q., Tang, D.L.: A digital twin simulator for real time energy saving control of serial manufacturing system. In: 2021 IEEE International Conference on Real-time Computing and Robotics, RCAR 2021, pp. 720–725 (2021). https://doi.org/10.1109/RCAR52367.2021.9517579
Pires, F., Ahmad, B., Moreira, A.P., Leitao, P.: Digital twin based what-if simulation for energy management. In: Proceedings of the 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS 2021, pp. 309–314 (2021). https://doi.org/10.1109/ICPS49255.2021.9468224
Teng, S.Y., Touš, M., Leong, W.D., How, B.S., Lam, H.L., Máša, V.: Recent advances on industrial data-driven energy savings: digital twins and infrastructures. Renew. Sustain. Energy Rev. 135(February), 2021 (2020). https://doi.org/10.1016/j.rser.2020.110208
Park, K.T., Lee, D., Noh, S.D.: Operation procedures of a work-center-level digital twin for sustainable and smart manufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 7(3), 791–814 (2020). https://doi.org/10.1007/s40684-020-00227-1
Wang, Y., Wang, S., Yang, B., Zhu, L., Liu, F.: Big data driven hierarchical digital twin predictive remanufacturing paradigm: architecture, control mechanism, application scenario and benefits. J. Clean. Prod. 248, 119299 (2020). https://doi.org/10.1016/j.jclepro.2019.119299
Wang, W., Zhang, Y., Zhong, R.Y.: A proactive material handling method for CPS enabled shop-floor. Robot. Comput. Integr. Manuf. 61(July 2019), 101849 (2020). https://doi.org/10.1016/j.rcim.2019.101849
Zhou, H., Yang, C., Sun, Y.: A collaborative optimization strategy for energy reduction in ironmaking digital twin. IEEE Access 8, 177570–177579 (2020). https://doi.org/10.1109/ACCESS.2020.3027544
Senna, P.P., Almeida, A.H., Barros, A.C., Bessa, R.J., Azevedo, A.L.: Architecture model for a holistic and interoperable digital energy management platform. Procedia Manuf. 51(2019), 1117–1124 (2020). https://doi.org/10.1016/j.promfg.2020.10.157
Cardin, O., et al.: Energy-aware resources in digital twin: the case of injection moulding machines. In: Borangiu, T., Trentesaux, D., Leitão, P., Giret Boggino, A., Botti, V. (eds.) SOHOMA 2019. SCI, vol. 853, pp. 183–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27477-1_14
Lima, F., Massote, A.A., Maia, R.F.: IoT energy retrofit and the connection of legacy machines inside the industry 4.0 concept. In: IECON Proceedings of the Industrial Electronics Conference, vol. 2019-Octob, pp. 5499–5504 (2019). https://doi.org/10.1109/IECON.2019.8927799
Wang, J., Huang, Y., Chang, Q., Li, S.: Event-driven online machine state decision for energy-efficient manufacturing system based on digital twin using max-plus algebra. Sustain. 11(18), 5036 (2019). https://doi.org/10.3390/su11185036
Gupta, A., Basu, B.: Sustainable primary aluminium production: technology status and future opportunities. Trans. Indian Inst. Met. 72(8), 2135–2150 (2019). https://doi.org/10.1007/s12666-019-01699-9
Wanner, J., Bahr, J., Full, J., Weeber, M., Birke, K.P., Sauer, A.: Technology assessment for digitalization in battery cell manufacturing. Procedia CIRP 99, 520–525 (2021). https://doi.org/10.1016/j.procir.2021.03.110
Leiden, A., Herrmann, C., Thiede, S.: Cyber-physical production system approach for energy and resource efficient planning and operation of plating process chains. J. Clean. Prod. 280, 125160 (2021). https://doi.org/10.1016/j.jclepro.2020.125160
Assad, F., Konstantinov, S., Ahmad, M.H., Rushforth, E.J., Harrison, R.: Utilising web-based digital twin to promote assembly line sustainability. In: Proceedings of the 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS 2021, pp. 381–386 (2021). https://doi.org/10.1109/ICPS49255.2021.9468209
Negri, E., Assiro, G., Caioli, L., Fumagalli, L.: A machine state-based digital twin development methodology. Proc. Summer Sch. Fr. Turco 1, 34–40 (2019)
Kannan, K., Arunachalam, N.: A digital twin for grinding wheel: an information sharing platform for sustainable grinding process. J. Manuf. Sci. Eng. Trans. ASME 141(2) (2019). doi: https://doi.org/10.1115/1.4042076
Park, K.T., Im, S.J., Kang, Y.S., Do Noh, S., Kang, Y.T., Yang, S.G.: Service-oriented platform for smart operation of dyeing and finishing industry. Int. J. Comput. Integr. Manuf. 32(3), 307–326 (2019). https://doi.org/10.1080/0951192X.2019.1572225
Karanjkar, N., Joglekar, A., Mohanty, S., Prabhu, V., Raghunath, D., Sundaresan, R.: Digital twin for energy optimization in an SMT-PCB assembly line. In: Proceedings of the 2018 IEEE International Conference on Internet Things Intelligent Systems, IOTAIS 2018, pp. 85–89 (2019). https://doi.org/10.1109/IOTAIS.2018.8600830
Yan, K., Xu, W., Yao, B., Zhou, Z., Pham, D.T.: Digital twin-based energy modeling of industrial robots. In: Li, L., Hasegawa, K., Tanaka, S. (eds.) AsiaSim 2018. CCIS, vol. 946, pp. 333–348. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2853-4_26
Zečević, N.: Energy intensification of steam methane reformer furnace in ammonia production by application of digital twin concept. Int. J. Sustain. Energy 41(1), 12–28 (2022). https://doi.org/10.1080/14786451.2021.1893727
Karandaev, A.S., Gasiyarov, V.R., Radionov, A.A., Loginov, B.M.: Development of digital models of interconnected electrical profiles for rolling–drawing wire mills. Machines 9(3), 1–28 (2021). https://doi.org/10.3390/machines9030054
Vatankhah Barenji, A., Liu, X., Guo, H., Li, Z.: A digital twin-driven approach towards smart manufacturing: reduced energy consumption for a robotic cell. Int. J. Comput. Integr. Manuf. 34(7–8), 844–859 (2021). https://doi.org/10.1080/0951192X.2020.1775297
Lu, Y., Liu, C., Wang, K.I.K., Huang, H., Xu, X.: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 61(November), 101837 (2020). https://doi.org/10.1016/j.rcim.2019.101837
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Perossa, D., Santacruz, R.F.B., Rocca, R., Fumagalli, L. (2023). Digital Twin Application to Energy Consumption Management in Production: A Literature Review. In: Noël, F., Nyffenegger, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. PLM in Transition Times: The Place of Humans and Transformative Technologies. PLM 2022. IFIP Advances in Information and Communication Technology, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-031-25182-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-25182-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25181-8
Online ISBN: 978-3-031-25182-5
eBook Packages: Computer ScienceComputer Science (R0)