Nothing Special   »   [go: up one dir, main page]

Skip to main content

FUSION: Fully Unsupervised Test-Time Stain Adaptation via Fused Normalization Statistics

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13807))

Included in the following conference series:

  • 2412 Accesses

  • 1 Citation

Abstract

Staining reveals the micro-structure of the aspirate while creating histopathology slides. Stain variation, defined as a chromatic difference between the source and the target, is caused by varying characteristics during staining, resulting in a distribution shift and poor performance on the target. The goal of stain normalization is to match the target’s chromatic distribution to that of the source. However, stain normalisation causes the underlying morphology to distort, resulting in an incorrect diagnosis. We propose FUSION, a new method for promoting stain-adaption by adjusting the model to the target in an unsupervised test-time scenario, eliminating the necessity for significant labelling at the target end. FUSION works by altering the target’s batch-normalization statistics and fusing them with source statistics using a weighting factor. The algorithm reduces to one of two extremes based on the weighting factor. Despite the lack of training or supervision, FUSION surpasses existing equivalent algorithms for classification and dense predictions (segmentation), as demonstrated by comprehensive experiments on two public datasets.

N. Chattopadhyay and S. Gehlot—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bándi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2019)

    Article  Google Scholar 

  2. Ganin, Y., Lempitsky, V.S.: Unsupervised domain adaptation by backpropagation. arXiv abs/1409.7495 (2015)

    Google Scholar 

  3. Gehlot, S., Gupta, A.: Self-supervision based dual-transformation learning for stain normalization, classification and segmentation. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 477–486. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_49

    Chapter  Google Scholar 

  4. Gupta, A., et al.: GCTI-SN: geometry-inspired chemical and tissue invariant stain normalization of microscopic medical images. Med. Image Anal. 65, 101788 (2020)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  6. Kothari, S., et al.: Automatic batch-invariant color segmentation of histological cancer images. In: From Nano to Macro, 2011 IEEE International Symposium on Biomedical Imaging, pp. 657–660 (2011)

    Google Scholar 

  7. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CoRR abs/1612.03144 (2016)

    Google Scholar 

  8. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: ISBI, pp. 1107–1110 (2009)

    Google Scholar 

  9. Magee, D., et al.: Colour normalisation in digital histopathology images. In: Proceedings of the Optical Tissue Image analysis in Microscopy, Histopathology and Endoscopy (MICCAI Workshop), vol. 100 (2009)

    Google Scholar 

  10. McCann, M.T., Majumdar, J., Peng, C., Castro, C.A., Kovačević, J.: Algorithm and benchmark dataset for stain separation in histology images. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 3953–3957 (2014)

    Google Scholar 

  11. Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshminarayanan, B., Snoek, J.: Evaluating prediction-time batch normalization for robustness under covariate shift. CoRR abs/2006.10963 (2020). https://arxiv.org/abs/2006.10963

  12. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 5, 34–41 (2001)

    Article  Google Scholar 

  13. Ruderman, D.L., Cronin, T.W., Chiao, C.C.: Statistics of cone responses to natural images: implications for visual coding. JOSA A 15(8), 2036–2045 (1998)

    Article  Google Scholar 

  14. Ruifrok, A., Ruifrok, D.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol./Int. Acad. Cytol. [and] Am. Soc. Cytol. 23(4), 291–299 (2001)

    Google Scholar 

  15. Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Improving robustness against common corruptions by covariate shift adaptation. CoRR abs/2006.16971 (2020). https://arxiv.org/abs/2006.16971

  16. Shaban, M.T., Baur, C., Navab, N., Albarqouni, S.: StainGAN: stain style transfer for digital histological images. arXiv preprint arXiv:1804.01601 (2018)

  17. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A.A., Hardt, M.: Test-time training for out-of-distribution generalization. CoRR abs/1909.13231 (2019)

    Google Scholar 

  18. Abe, T., Murakami, Y., Yamaguchi, M.: Color correction of pathological images based on dye amount quantification. Opt. Rev. 12(4), 293–300 (2005)

    Article  Google Scholar 

  19. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946 (2019)

    Google Scholar 

  20. Tellez, D., et al.: Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019)

    Article  Google Scholar 

  21. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. CoRR abs/1510.02192 (2015)

    Google Scholar 

  22. Vahadane, A., et al.: Structure-preserved color normalization for histological images. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1012–1015 (2015)

    Google Scholar 

  23. Veta, M., et al.: Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge. Med. Image Anal. 54, 111–121 (2019)

    Article  Google Scholar 

  24. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=uXl3bZLkr3c

  25. Zanjani, F.G., Zinger, S., Bejnordi, B.E., van der Laak, J.A.W.M.: Histopathology stain-color normalization using deep generative models. In: 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), pp. 1–11 (2018)

    Google Scholar 

  26. Zanjani, F.G., Zinger, S., Bejnordi, B.E., van der Laak, J.A.W.M., de With, P.H.N.: Stain normalization of histopathology images using generative adversarial networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 573–577 (2018). https://doi.org/10.1109/ISBI.2018.8363641

  27. Zhang, M., Levine, S., Finn, C.: MEMO: test time robustness via adaptation and augmentation. CoRR abs/2110.09506 (2021). https://arxiv.org/abs/2110.09506

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Singhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chattopadhyay, N., Gehlot, S., Singhal, N. (2023). FUSION: Fully Unsupervised Test-Time Stain Adaptation via Fused Normalization Statistics. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13807. Springer, Cham. https://doi.org/10.1007/978-3-031-25082-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25082-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25081-1

  • Online ISBN: 978-3-031-25082-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics