Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhanced Coarse-to-Fine Network for Image Restoration from Under-Display Cameras

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

New sensors and imaging systems are the indispensable foundation for mobile intelligent photography and imaging. Nowadays, under-display cameras (UDCs) demonstrate practical applicability in smartphones, laptops, tablets, and other scenarios. However, the images captured by UDCs suffer from complex image degradation issues, such as flare, haze, blur, and noise. To solve the above issues, we present an Enhanced Coarse-to-Fine Network (ECFNet) to effectively restore the UDC images, which takes the multi-scale images as the input and gradually generates multi-scale results from coarse to fine. We design two enhanced core components, i.e., Enhanced Residual Dense Block (ERDB) and multi-scale Cross-Gating Fusion Module (CGFM), in the ECFNet, and we further introduce progressive training and model ensemble strategies to enhance the results. Experimental results show superior performance against the existing state-of-the-art methods both qualitatively and visually, and our ECFNet achieves the best performance in terms of all the evaluation metrics in the MIPI-challenge 2022 Under-display Camera Image Restoration track. Our source codes are available at this repository.

Y. Zhu—This work was done during his internship at Shanghai Al Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2018)

  2. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3155–3164 (2019)

    Google Scholar 

  3. Chen, D., et al.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375–1383. IEEE (2019)

    Google Scholar 

  4. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. LNCS, vol. 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_2

  5. Cheng, C.J., et al.: P-79: evaluation of diffraction induced background image quality degradation through transparent OLED display. In: SID Symposium Digest of Technical Papers, vol. 50, pp. 1533–1536. Wiley Online Library (2019)

    Google Scholar 

  6. Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4641–4650 (2021)

    Google Scholar 

  7. Feng, R., Li, C., Chen, H., Li, S., Loy, C.C., Gu, J.: Removing diffraction image artifacts in under-display camera via dynamic skip connection network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 662–671 (2021)

    Google Scholar 

  8. Fu, X., Qi, Q., Zha, Z.J., Zhu, Y., Ding, X.: Rain streak removal via dual graph convolutional network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1352–1360 (2021)

    Google Scholar 

  9. Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3848–3856 (2019)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  14. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: 29th Proceedings of Conference on Advances in Neural Information Processing System (2016)

    Google Scholar 

  15. Kim, S.-W., Kook, H.-K., Sun, J.-Y., Kang, M.-C., Ko, S.-J.: Parallel feature pyramid network for object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 239–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_15

    Chapter  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Koh, J., Lee, J., Yoon, S.: BNUDC: a two-branched deep neural network for restoring images from under-display cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1950–1959 (2022)

    Google Scholar 

  18. Kwon, H.J., Yang, C.M., Kim, M.C., Kim, C.W., Ahn, J.Y., Kim, P.R.: Modeling of luminance transition curve of transparent plastics on transparent OLED displays. Electr. Imaging 2016(20), 1–4 (2016)

    Google Scholar 

  19. Liu, D., Wen, B., Fan, Y., Loy, C.C., Huang, T.S.: Non-local recurrent network for image restoration. In: 31st Proceedings of Conference on Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  20. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  21. Ma, Y., Liu, X., Bai, S., Wang, L., He, D., Liu, A.: Coarse-to-fine image inpainting via region-wise convolutions and non-local correlation. In: IJCAI, pp. 3123–3129 (2019)

    Google Scholar 

  22. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  23. Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C.C., Luo, P.: Exploiting deep generative prior for versatile image restoration and manipulation. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7474–7489 (2021)

    Google Scholar 

  24. Panikkasseril Sethumadhavan, H., Puthussery, D., Kuriakose, M., Charangatt Victor, J.: Transform domain pyramidal dilated convolution networks for restoration of under display camera images. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 364–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_28

    Chapter  Google Scholar 

  25. Qin, Z., Tsai, Y.H., Yeh, Y.W., Huang, Y.P., Shieh, H.P.D.: See-through image blurring of transparent organic light-emitting diodes display: calculation method based on diffraction and analysis of pixel structures. J. Display Technol. 12(11), 1242–1249 (2016)

    Article  Google Scholar 

  26. Qin, Z., Xie, J., Lin, F.C., Huang, Y.P., Shieh, H.P.D.: Evaluation of a transparent display’s pixel structure regarding subjective quality of diffracted see-through images. IEEE Photonics J. 9(4), 1–14 (2017)

    Article  Google Scholar 

  27. Ren, W., et al.: Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3253–3261 (2018)

    Google Scholar 

  28. Sundar, V., Hegde, S., Kothandaraman, D., Mitra, K.: Deep Atrous guided filter for image restoration in under display cameras. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 379–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_29

    Chapter  Google Scholar 

  29. Tang, Q., Jiang, H., Mei, X., Hou, S., Liu, G., Li, Z.: 28–2: study of the image blur through FFS LCD panel caused by diffraction for camera under panel. In: SID Symposium Digest of Technical Papers, vol. 51, pp. 406–409. Wiley Online Library (2020)

    Google Scholar 

  30. Wang, L., Li, Y., Wang, S.: Deepdeblur: fast one-step blurry face images restoration. arXiv preprint arXiv:1711.09515 (2017)

  31. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  33. Yang, Q., Liu, Y., Tang, J., Ku, T.: Residual and dense UNet for under-display camera restoration. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 398–408. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_30

    Chapter  Google Scholar 

  34. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)

    Google Scholar 

  35. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Rrecognition, pp. 14821–14831 (2021)

    Google Scholar 

  36. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: CVPR (2021)

    Google Scholar 

  37. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5978–5986 (2019)

    Google Scholar 

  38. Zhang, K., Tao, D., Gao, X., Li, X., Li, J.: Coarse-to-fine learning for single-image super-resolution. IEEE Trans. Neural Netw. Learn. Syst. 28(5), 1109–1122 (2016)

    Article  Google Scholar 

  39. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  40. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  41. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  42. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 43(7), 2480–2495 (2020)

    Article  Google Scholar 

  43. Zhao, H., Kong, X., He, J., Qiao, Yu., Dong, C.: Efficient image super-resolution using pixel attention. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 56–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_3

    Chapter  Google Scholar 

  44. Zhou, Y., et al.: UDC 2020 challenge on image restoration of under-display camera: methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 337–351. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_26

    Chapter  Google Scholar 

  45. Zhou, Y., Ren, D., Emerton, N., Lim, S., Large, T.: Image restoration for under-display camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9179–9188 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 61901433 and in part by the USTC Research Funds of the Double First-Class Initiative under Grant YD2100002003. This work is partially supported by the Shanghai Committee of Science and Technology (Grant No. 21DZ1100100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueyang Fu or Xiaowei Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y., Wang, X., Fu, X., Hu, X. (2023). Enhanced Coarse-to-Fine Network for Image Restoration from Under-Display Cameras. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics