Abstract
Recent advances in data augmentation enable one to translate images by learning the mapping between a source domain and a target domain. Existing methods tend to learn the distributions by training a model on a variety of datasets, with results evaluated largely in a subjective manner. Relatively few works in this area, however, study the potential use of image synthesis methods for recognition tasks. In this paper, we propose and explore the problem of image translation for data augmentation. We first propose a lightweight yet efficient model for translating texture to augment images based on a single input of source texture, allowing for fast training and testing, referred to as Single Image Texture Translation for data Augmentation (SITTA). Then we explore the use of augmented data in long-tailed and few-shot image classification tasks. We find the proposed augmentation method and workflow is capable of translating the texture of input data into a target domain, leading to consistently improved image recognition performance. Finally, we examine how SITTA and related image translation methods can provide a basis for a data-efficient, “augmentation engineering” approach to model training.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The \(\epsilon \) is a small stability constant (e.g., \(\epsilon =10^{-5}\)) to avoid divisions by zero and imaginary values due to numerical inaccuracies.
- 2.
We first train a SinGAN model and then apply it to Paint to Image.
- 3.
Note: We utilize the official code or the widely used github code. For CycleGAN, we train it for the same number of epochs of SITTA to make fair comparisons. For FUNIT, we test the one-shot translation using the offical pre-trained model that has been trained for 100,000 iterations, so the ‘training time’ is ‘-’, ‘training iters’ is ‘pre-train’. We report the training time of SinGAN and TuiGAN at Scale = 0, which costs less time than other scales.
References
Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340, 2017
Bolukbasi, T., Chang, K.-W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to computer programmer as woman is to homemaker? debiasing word embeddings. Adv. Neural Inf. Process. Syst. 29, 4349–4357 (2016)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 341–346 (2001)
Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)
Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)
Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural. Inf. Process. Syst. 27, 2672–2680 (2014)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. arXiv preprint arXiv:1706.08500 (2017)
Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11
Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3
LeGendre, C., et al.: DeepLight: learning illumination for unconstrained mobile mixed reality. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5918–5928 (2019)
Li, B., Wu, F., Lim, S.-N., Belongie, S., Weinberger, K.Q.: On feature normalization and data augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12383–12392 (2021)
Li, B., Wu, F., Weinberger, K.Q., Belongie, S.: Positional normalization. In: Advances in Neural Information Processing Systems, pp. 1622–1634 (2019)
Lin, J., Pang, Y., Xia, Y., Chen, Z., Luo, J.: TuiGAN: learning versatile image-to-image translation with two unpaired images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 18–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_2
Liu, M.-Y., et al.: Few-shot unsupervised image-to-image translation. In: arxiv, Timo Aila (2019)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. arXiv preprint arXiv:2003.08934 (2020)
Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)
Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19
Park, T., Zhu, J.-Y., Wang, O., Lu, J., Shechtman, E., Efros, A., Zhang, R.: Swapping autoencoder for deep image manipulation. In: Advances in Neural Information Processing Systems 33 (2020)
Paszke, A., et al. PyTorch: an imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)
Qin, Z., Liu, Z., Zhu, P., Xue, Y.: A GAN-based image synthesis method for skin lesion classification. Comput. Methods Programs Biomed. 195, 105568 (2020)
Rao, K., Harris, C., Irpan, A., Levine, S., Ibarz, J., Khansari, M.: RL-CycleGAN: reinforcement learning aware simulation-to-real. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11157–11166 (2020)
Shaham, T.R., Dekel, T., Michaeli, T.: SinGAN: learning a generative model from a single natural image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4570–4580 (2019)
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)
Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2107–2116 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Somavarapu, N., Ma, C.-Y., Kira, Z.: Frustratingly simple domain generalization via image stylization. arXiv preprint arXiv:2006.11207 (2020)
Sun, Q., Liu, Y., Chua, T.-S., Schiele, B.: Meta-transfer learning for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Thapa, R., Snavely, N., Belongie, S., Khan, A.: The plant pathology 2020 challenge dataset to classify foliar disease of apples. arXiv preprint arXiv:2004.11958 (2020)
Théry, M., Casas, J.: Predator and prey views of spider camouflage. Nature 415(6868), 133 (2002)
Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy. In: Advances in Neural Information Processing Systems, pp. 8250–8260 (2019)
Van Horn, G., et al.: The iNaturalist species classification and detection dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778 (2018)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset (2011)
Wang, Y., Pan, X., Song, S., Zhang, H., Huang, G., Wu, C.: Implicit semantic data augmentation for deep networks. In: Advances in Neural Information Processing Systems, pp. 12635–12644 (2019)
Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. (CSUR), 53(3), 1–34 (2020)
Wang, Y.-X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7278–7286 (2018)
Xiao, T., Wang, X., Efros, A.A., Darrell, T.: What should not be contrastive in contrastive learning. In International Conference on Learning Representations (2021)
Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.-W.: Photorealistic style transfer via wavelet transforms. In: International Conference on Computer Vision (ICCV) (2019)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6023–6032 (2019)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zhang, Y., Zhang, Y., Qinwei, X., Zhang, R.: Learning robust shape-based features for domain generalization. IEEE Access 8, 63748–63756 (2020)
Zheng, X., Chalasani, T., Ghosal, K., Lutz, S., Smolic, A.: STaDa: style transfer as data augmentation. arXiv preprint arXiv:1909.01056 (2019)
Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)
Acknowledgement
This work was supported in part by the Pioneer Centre for AI, DNRF grant number P1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, B., Cui, Y., Lin, TY., Belongie, S. (2023). SITTA: Single Image Texture Translation for Data Augmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-25063-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25062-0
Online ISBN: 978-3-031-25063-7
eBook Packages: Computer ScienceComputer Science (R0)