Abstract
Image captioning models are usually trained according to human annotated ground-truth captions, which could generate accurate but generic captions. In this paper, we focus on generating distinctive captions that can distinguish the target image from other similar images. To evaluate the distinctiveness of captions, we introduce a series of metrics that use large-scale vision-language pre-training model CLIP to quantify the distinctiveness. To further improve the distinctiveness of captioning models, we propose a simple and effective training strategy that trains the model by comparing target image with similar image group and optimizing the group embedding gap. Extensive experiments are conducted on various baseline models to demonstrate the wide applicability of our strategy and the consistency of metric results with human evaluation. By comparing the performance of our best model with existing state-of-the-art models, we claim that our model achieves new state-of-the-art towards distinctiveness objective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional image caption evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 382–398. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_24
Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6077–6086 (2018)
Banerjee, S., Lavie, A.: Meteor: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72 (2005)
Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. Advances in neural information processing systems 28 (2015)
Cho, J., Yoon, S., Kale, A., Dernoncourt, F., Bui, T., Bansal, M.: Fine-grained image captioning with clip reward. arXiv preprint arXiv:2205.13115 (2022)
Cho, K., Courville, A., Bengio, Y.: Describing multimedia content using attention-based encoder-decoder networks. IEEE Trans. Multimedia 17(11), 1875–1886 (2015)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Cornia, M., Stefanini, M., Baraldi, L., Cucchiara, R.: Meshed-memory transformer for image captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10578–10587 (2020)
Dai, B., Fidler, S., Urtasun, R., Lin, D.: Towards diverse and natural image descriptions via a conditional gan. In: Proceedings of the IEEE international conference on computer vision. pp. 2970–2979 (2017)
Dai, B., Lin, D.: Contrastive learning for image captioning. Advances in Neural Information Processing Systems 30 (2017)
Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: Vse++: improving visual-semantic embeddings with hard negatives. arXiv preprint arXiv:1707.05612 (2017)
Frankel, C., Swain, M.J., Athitsos, V.: Webseer: An image search engine for the world wide web. Technical Report 96–14, University of Chicago, Computer Science Department (1996)
Gu, J., Cai, J., Wang, G., Chen, T.: Stack-captioning: coarse-to-fine learning for image captioning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3128–3137 (2015)
Li, Y., Pan, Y., Chen, J., Yao, T., Mei, T.: X-modaler: A versatile and high-performance codebase for cross-modal analytics. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3799–3802 (2021)
Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, L., Tang, J., Wan, X., Guo, Z.: Generating diverse and descriptive image captions using visual paraphrases. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4240–4249 (2019)
Luo, R., Price, B., Cohen, S., Shakhnarovich, G.: Discriminability objective for training descriptive captions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6964–6974 (2018)
Ma, L., Lu, Z., Shang, L., Li, H.: Multimodal convolutional neural networks for matching image and sentence. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2623–2631 (2015)
Makav, B., Kılıç, V.: A new image captioning approach for visually impaired people. In: 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), pp. 945–949. IEEE (2019)
Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., Yuille, A.: Deep captioning with multimodal recurrent neural networks (m-rnn). arXiv preprint arXiv:1412.6632 (2014)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Pan, Y., Yao, T., Li, Y., Mei, T.: X-linear attention networks for image captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10971–10980 (2020)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Ranzato, M., Chopra, S., Auli, M., Zaremba, W.: Sequence level training with recurrent neural networks. arXiv preprint arXiv:1511.06732 (2015)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (2015)
Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence training for image captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7008–7024 (2017)
Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2556–2565 (2018)
Shetty, R., Rohrbach, M., Anne Hendricks, L., Fritz, M., Schiele, B.: Speaking the same language: Matching machine to human captions by adversarial training. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4135–4144 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)
Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)
Wang, J., Xu, W., Wang, Q., Chan, A.B.: Compare and reweight: distinctive image captioning using similar images sets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 370–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_22
Wang, J., Xu, W., Wang, Q., Chan, A.B.: Group-based distinctive image captioning with memory attention. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 5020–5028 (2021)
Wang, Q., Chan, A.B.: Describing like humans: on diversity in image captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4195–4203 (2019)
Wang, Z., Feng, B., Narasimhan, K., Russakovsky, O.: Towards unique and informative captioning of images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 629–644. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_37
Xiong, Y., Du, B., Yan, P.: Reinforced transformer for medical image captioning. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 673–680. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_77
Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057. PMLR (2015)
Yao, T., Pan, Y., Li, Y., Mei, T.: Exploring visual relationship for image captioning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 711–727. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_42
Yao, T., Pan, Y., Li, Y., Qiu, Z., Mei, T.: Boosting image captioning with attributes. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4894–4902 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Wang, J., Wu, H., Xu, W. (2023). Distinctive Image Captioning via CLIP Guided Group Optimization. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13804. Springer, Cham. https://doi.org/10.1007/978-3-031-25069-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-25069-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25068-2
Online ISBN: 978-3-031-25069-9
eBook Packages: Computer ScienceComputer Science (R0)