Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ego-Motion Compensation of Range-Beam-Doppler Radar Data for Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

With deep learning based perception tasks on radar input data gaining more attention for autonomous driving, the use of new data interfaces, specifically range-beam-doppler tensors, are explored to maximize the performance of corresponding algorithms. Surprisingly, in past publications, the Doppler information of this data has only played a minor role, even though velocity is considered a powerful feature. We investigate the hypothesis that the sensor ego-velocity, induced by the ego vehicle motion, increases the data generalization complexity of the range-beam-doppler data and propose a phase shift of the electromagnetic wave to normalize the data by compensating for the ego vehicle motion. We show its efficacy versus non-compensated data with an improvement of 8.7% average precision (AP) for object detection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Scheck, T., Mallandur, A., Wiede, C., Hirtz, G.: Where to drive: free space detection with one fisheye camera. In: Twelfth International Conference on Machine Vision (ICMV 2019) (2020)

    Google Scholar 

  2. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

    Google Scholar 

  3. Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: LaserNet: an efficient probabilistic 3D object detector for autonomous driving. In: CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12669–12678 (2019). IEEE (2019)

    Google Scholar 

  4. Meyer, M., Kuschk, G., Tomforde, S.: Complex-valued convolutional neural networks for automotive scene classification based on range-beam-doppler tensors. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) (2020)

    Google Scholar 

  5. Lim, T.Y., et al.: Radar and camera early fusion for vehicle detection in advanced driver assistance systems. In: Conference on Neural Information Processing Systems Workshops (2019)

    Google Scholar 

  6. Orr, I., Cohen, M., Zalevsky, Z.: High-resolution radar road segmentation using weakly supervised learning. In: Nature Machine Intelligence, pp. 1–8 (2021)

    Google Scholar 

  7. Scheiner, N., et al.: Seeing around street corners: non-line-of-sight detection and tracking in-the-wild using doppler radar. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2068–2077 (2020)

    Google Scholar 

  8. Dong, X., Wang, P., Zhang, P., Liu, L.: Probabilistic oriented object detection in automotive radar. In: Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 458–467 (2020)

    Google Scholar 

  9. Kothari, R., Kariminezhad, A., Mayr, C., Zhang, H.: Object detection and heading forecasting by fusing raw radar data using cross attention. CoRR (2022). https://doi.org/10.48550/arXiv.2205.08406

  10. Zhang, A., Nowruzi, F.E., Laganiere, R.: Raddet: range-azimuth-doppler based radar object detection for dynamic road users. In: 2021 18th Conference on Robots and Vision (CRV), pp. 95–102 (2021)

    Google Scholar 

  11. Major, B., et al.: Vehicle detection with automotive radar using deep learning on range-azimuth-doppler tensors. In: International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  12. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  13. Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu, k.: Spatial transformer networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)

    Google Scholar 

  14. Palffy, A., Dong, J., Kooij, J.F., Gavrila, D.M.: CNN based road user detection using the 3D radar cube. IEEE Robot. Autom. Lett. 5(2), 1263–1270 (2020)

    Article  Google Scholar 

  15. Niederlöhner, D., et al.: Self-supervised velocity estimation for automotive radar object detection networks (2022)

    Google Scholar 

  16. Ulrich, M., et al.: Improved orientation estimation and detection with hybrid object detection networks for automotive radar (2022)

    Google Scholar 

  17. Iovescu, C., Rao, S.: The fundamentals of millimeter wave sensors. In: Texas Instruments, pp. 1–8 (2017)

    Google Scholar 

  18. Albagory, Y.: An efficient conformal stacked antenna array design and 3D-beamforming for UAV and space vehicle communications. Sensors 21(4), 1362 (2021)

    Article  Google Scholar 

  19. Skolnik, M.I.: Radar handbook. McGraw-Hill Education (2008)

    Google Scholar 

  20. Stoica, P., Li, J., Xie, Y.: On probing signal design for MIMO radar. IEEE Trans. Sig. Process. 55(8), 4151–4161 (2007)

    Google Scholar 

  21. Meyer, M., Kuschk, G., Tomforde, S.: Graph convolutional networks for 3D object detection on radar data. In: IEEE/CVF International Conference on Computer Vision (ICCV) Workshops (2021)

    Google Scholar 

  22. Roddick, T., Kendall, A., Cipolla, R.: Orthographic feature transform for monocular 3D object detection. CoRR (2018). http://arxiv.org/abs/1811.08188

  23. Meyer, M., Nekkah, S., Kuschk, G., Tomforde, S.: Automotive object detection on highly compressed range-beam-doppler radar data. In: EuRAD (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyer, M., Unzueta, M., Kuschk, G., Tomforde, S. (2023). Ego-Motion Compensation of Range-Beam-Doppler Radar Data for Object Detection. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25056-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25055-2

  • Online ISBN: 978-3-031-25056-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics