Nothing Special   »   [go: up one dir, main page]

Skip to main content

Autonomous Learning Rate Optimization for Deep Learning

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13621))

Included in the following conference series:

  • 599 Accesses

Abstract

A significant question in deep learning is: what should that learning rate be? The answer to this question is often tedious and time consuming to obtain, and a great deal of arcane knowledge has accumulated in recent years over how to pick and modify learning rates to achieve optimal training performance. Moreover, the long hours spent carefully crafting the perfect learning rate can be more demanding than optimizing network architecture itself. Advancing automated machine learning, we propose a new answer to the great learning rate question: the Autonomous Learning Rate Controller. Source code is available at https://github.com/fastestimator/ARC/tree/v1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bello, I., Zoph, B., Vasudevan, V., Le, Q.V.: Neural optimizer search with reinforcement learning. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017. Proceedings of Machine Learning Research, vol. 70, pp. 459–468. PMLR (2017). https://proceedings.mlr.press/v70/bello17a.html

  2. Bochkovskiy, A., Wang, C., Liao, H.M.: Yolov4: optimal speed and accuracy of object detection. CoRR abs/2004.10934 (2020). https://arxiv.org/abs/2004.10934

  3. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  4. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Wu, D., Carpuat, M., Carreras, X., Vecchi, E.M. (eds.) Proceedings of SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 25 October 2014. pp. 103–111. Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/W14-4012, https://www.aclweb.org/anthology/W14-4012/

  5. Coleman, C.A., et al.: Dawnbench: an end-to-end deep learning benchmark and competition, nIPS ML Systems Workshop (2017)

    Google Scholar 

  6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

  7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(61), 2121–2159 (2011). https://jmlr.org/papers/v12/duchi11a.html

  8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015). https://arxiv.org/abs/1412.6572

  9. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour. CoRR abs/1706.02677 (2017). https://arxiv.org/abs/1706.02677

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–80 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  12. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 2261–2269. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.243

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015. JMLR Workshop and Conference Proceedings, vol. 37, pp. 448–456. JMLR.org (2015). https://proceedings.mlr.press/v37/ioffe15.html

  14. Jaeger, S., Candemir, S., Antani, S., Wang, Y.X., Lu, P.X., Thoma, G.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med. Surg. 4(6), 475–477 (2014)

    Google Scholar 

  15. Karpathy, A.: The unreasonable effectiveness of recurrent neural networks. https://karpathy.github.io/2015/05/21/rnn-effectiveness/. Accessed 04 Nov 2020

  16. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 7482–7491. IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00781, https://openaccess.thecvf.com/content_cvpr_2018/html/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.html

  17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). https://arxiv.org/abs/1412.6980

  18. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition (2015). iCML Deep Learning Workshop

    Google Scholar 

  19. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 2999–3007. IEEE Computer Society (2017). https://doi.org/10.1109/ICCV.2017.324

  21. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=S1eYHoC5FX

  22. Liu, J., Cyphers, S., Pasupat, P., McGraw, I., Glass, J.R.: A conversational movie search system based on conditional random fields. In: INTERSPEECH 2012, 13th Annual Conference of the International Speech Communication Association, Portland, Oregon, USA, 9–13 September 2012, pp. 2454–2457. ISCA (2012). https://www.isca-speech.org/archive/interspeech_2012/i12_2454.html

  23. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR abs/1907.11692 (2019). https://arxiv.org/abs/1907.11692

  24. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?id=Skq89Scxx

  25. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150. Association for Computational Linguistics, Portland, Oregon, USA (June 2011). https://www.aclweb.org/anthology/P11-1015

  26. Marcus, M.P.: Treebank-3 ldc99t42. web download. https://catalog.ldc.upenn.edu/LDC99T42. Accessed 04 Nov 2020

  27. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: nIPS Deep Learning and Unsupervised Feature Learning Workshop (2011)

    Google Scholar 

  28. Page, D.C.: Cifar10-fast dawn benchmark implementation. https://github.com/davidcpage/cifar10-fast. Accessed 04 Nov 2020

  29. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 4092–4101. PMLR (2018). https://proceedings.mlr.press/v80/pham18a.html

  30. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020). https://jmlr.org/papers/v21/20-074.html

  31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). https://arxiv.org/abs/1409.1556

  33. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 2818–2826. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.308

  34. Tieleman, T., Hinton, G.: Lecture 6.5–RmsProp: divide the gradient by a running average of its recent magnitude. In: COURSERA: Neural Networks for Machine Learning (2012)

    Google Scholar 

  35. Verma, G., Swami, A.: Error correcting output codes improve probability estimation and adversarial robustness of deep neural networks. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, pp. 8643–8653. Canada, Vancouver, BC (2019)

    Google Scholar 

  36. Wang, C.Y., Mark Liao, H.Y., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNET: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391 (2020)

    Google Scholar 

  37. Welinder, P., et al.: Caltech-UCSD Birds 200. Technical report CNS-TR-2010-001, California Institute of Technology (2010)

    Google Scholar 

  38. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?id=r1Ue8Hcxg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, X. et al. (2022). Autonomous Learning Rate Optimization for Deep Learning. In: Simos, D.E., Rasskazova, V.A., Archetti, F., Kotsireas, I.S., Pardalos, P.M. (eds) Learning and Intelligent Optimization. LION 2022. Lecture Notes in Computer Science, vol 13621. Springer, Cham. https://doi.org/10.1007/978-3-031-24866-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24866-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24865-8

  • Online ISBN: 978-3-031-24866-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics