Nothing Special   »   [go: up one dir, main page]

Skip to main content

Realtime Gray-Box Algorithm Configuration

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13621))

Included in the following conference series:

Abstract

A solver’s runtime and the quality of the solutions it generates are strongly influenced by its parameter settings. Finding good parameter configurations is a formidable challenge, even for fixed problem instance distributions. However, when the instance distribution can change over time, a once effective configuration may no longer provide adequate performance. Realtime algorithm configuration (RAC) offers assistance in finding high-quality configurations for such distributions by automatically adjusting the configurations it recommends based on instances seen so far. Existing RAC methods treat the solver to be configured as a black box, meaning the solver is given a configuration as input, and it outputs either a solution or runtime as an objective function for the configurator. However, analyzing intermediate output from the solver can enable configurators to avoid wasting time on poorly performing configurations. To this end, we propose a gray-box approach that utilizes intermediate output during evaluation and implement it within the RAC method CPPL. We apply cost sensitive machine learning with pairwise comparisons to determine whether ongoing evaluations can be terminated to free resources. We compare our realtime gray-box configurator to a black-box equivalent on several experimental settings and show that our approach reduces the total solving time in several scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adenso-Díaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Operat. Res. 54, 99–114 (2006)

    Google Scholar 

  2. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-based genetic algorithms for algorithm configuration. In: International Joint Conferences on Artificial Intelligence Organization (IJCAI) (2015)

    Google Scholar 

  3. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Principles and Practice of Constraint Programming - CP 2009, pp. 142–157 (2009). https://doi.org/10.1007/978-3-642-04244-7_14

  4. Astudillo, R., Frazier, P.I.: Thinking inside the box: a tutorial on grey-box Bayesian optimization. In: 2021 Winter Simulation Conference (WSC), pp. 1–15 (2021). https://doi.org/10.1109/WSC52266.2021.9715343

  5. Audemard, G.: Glucose and Syrup in the SAT Race 2015. In: SAT Competition 2015 (2015)

    Google Scholar 

  6. Bahnsen, A.C., Aouada, D., Ottersten, B.: Example-dependent cost-sensitive decision trees. Expert Syst. Appl. 42(19), 6609–6619 (2015). https://doi.org/10.1016/j.eswa.2015.04.042

    Article  Google Scholar 

  7. Biere, A.: CaDiCaL at the SAT Race 2019. In: SAT Race 2019 - Solver and Benchmark Descriptions, p. 2 (2019)

    Google Scholar 

  8. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 11–18 (2002)

    Google Scholar 

  9. El Mesaoudi-Paul, A., Bengs, V., Hüllermeier, E.: Online Preselection with Context Information under the Plackett-Luce Model (2020)

    Google Scholar 

  10. El Mesaoudi-Paul, A., Weiß, D., Bengs, V., Hüllermeier, E., Tierney, K.: Pool-based realtime algorithm configuration: a preselection bandit approach. In: Kotsireas, I.S., Pardalos, P.M. (eds.) LION 2020. LNCS, vol. 12096, pp. 216–232. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53552-0_22

    Chapter  Google Scholar 

  11. Fitzgerald, T., Malitsky, Y., O’Sullivan, B.: ReACTR: realtime algorithm configuration through tournament rankings. In: International Joint Conferences on Artificial Intelligence Organization (IJCAI), pp. 304–310 (2015)

    Google Scholar 

  12. Fitzgerald, T., Malitsky, Y., O’Sullivan, B.J., Tierney, K.: ReACT: real-time algorithm configuration through tournaments. In: Annual Symposium on Combinatorial Search (SoCS) (2014)

    Google Scholar 

  13. Friedrich, T., Krohmer, A., Rothenberger, R., Sutton, A.: Phase Transitions for scale-free SAT formulas. In: Association for the Advancement of Artificial IntelligenceSPONSORSHIP (AAAI), pp. 3893–3899 (2017)

    Google Scholar 

  14. Giráldez-Cru, J., Levy, J.: A modularity-based random SAT instances generator. In: International Joint Conferences on Artificial Intelligence Organization (IJCAI), pp. 1952–1958 (2015)

    Google Scholar 

  15. Guo, S., Sanner, S., Graepel, T., Buntine, W.L.: Score-based Bayesian skill learning. In: European conference on Machine Learning and Knowledge Discovery in Databases (ECMLPKDD), pp. 106–121 (2012). https://doi.org/10.1007/978-3-642-33460-3_12

  16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Learning and Intelligent Optimization (LION), p. 507–523 (2011)

    Google Scholar 

  17. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. (JAIR), p. 267–306 (2009)

    Google Scholar 

  18. Hutter, F., et al.: Aclib: a benchmark library for algorithm configuration. In: International Conference on Learning and Intelligent Optimization (LION), pp. 36–40 (2014). https://doi.org/10.1007/978-3-319-09584-4_4

  19. IBM: IBM ILOG CPLEX Optimization Studio: CPLEX User’s Manual (2016). https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf

  20. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Efficient hyperparameter optimization and infinitely many armed bandits. CoRR abs/1603.06560 (2016). http://arxiv.org/abs/1603.06560

  21. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package: iterated racing for automatic algorithm configuration. Operat. Res. Perspect. pp. 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

  22. Pardalos, P.M., Rasskazova, V., Vrahatis, M.N.: black box optimization, machine learning, and no-free lunch theorems. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-66515-9

  23. Pushak, Y., Hoos, H.: Golden parameter search: exploiting structure to quickly configure parameters in parallel. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 245–253 (2020). https://doi.org/10.1145/3377930.3390211

  24. Santos, H., Toffolo, T.: Python MIP: Modeling examples (2018–2019). Accessed 23 Jan 2020. https://engineering.purdue.edu/~mark/puthesis/faq/cite-url/

  25. Schede, E., et al.: A survey of methods for automated algorithm configuration (2022)

    Google Scholar 

  26. Speck, D., Biedenkapp, A., Hutter, F., Mattmüller, R., Lindauer, M.: Learning heuristic selection with dynamic algorithm configuration. CoRR abs/2006.08246 (2020). https://arxiv.org/abs/2006.08246

  27. Tsymbal, A.: The problem of concept drift: definitions and related work. Tech. rep., Department of Computer Science, Trinity College, Dublin (2004)

    Google Scholar 

Download references

Acknowledgements

The authors are supported in part by the funding program Zentrales Innovationsprogramm Mittelstand (ZIM) (Grant No. ZF4622601LF8) of the German Federal Ministry for Economic Affairs and Climate Action, and the project Maschinelle Intelligenz für die Maschinelle Intelligenz für die Optimierung von Wertschöpfungsnetzwerken (MOVE) (Grant No. 005-2001-0042) of the “it’s OWL” funding of the Ministry of Economics, Innovation, Digitalization and Energy of the German state of North Rhine-Westphalia. The authors would also like to thank the Paderborn Center for Parallel Computation (PC\(^2\)) for the use of the OCuLUS and Noctua clusters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weiss, D., Tierney, K. (2022). Realtime Gray-Box Algorithm Configuration. In: Simos, D.E., Rasskazova, V.A., Archetti, F., Kotsireas, I.S., Pardalos, P.M. (eds) Learning and Intelligent Optimization. LION 2022. Lecture Notes in Computer Science, vol 13621. Springer, Cham. https://doi.org/10.1007/978-3-031-24866-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24866-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24865-8

  • Online ISBN: 978-3-031-24866-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics