Nothing Special   »   [go: up one dir, main page]

Skip to main content

Kaspar Causally Explains

  • Conference paper
  • First Online:
Social Robotics (ICSR 2022)

Abstract

The Kaspar robot has been used with great success to work as an education and social mediator with children with autism spectrum disorder. Enabling the robot to automatically generate causal explanations is key to enrich the interaction scenarios for children and promote trust in the robot. We present a theory of causal explanation to be embedded in Kaspar. Based on this theory, we build a causal model and an analysis method to calculate causal explanations. We implement our method in Java with inputs provided by a human operator. This model automatically generates the causal explanation that are then spoken by Kaspar. We validate our explanations for user satisfaction in an empirical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There’s a slight abuse of notation since \(w'\) might not be the same size as \(W'\).

References

  1. Baier, C., et al.: From verification to causality-based explications. In: Proceedings of ICALP (2021)

    Google Scholar 

  2. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterexamples using causality. Formal Meth. Syst. Des. 40(1), 20–40 (2012)

    Article  MATH  Google Scholar 

  3. Chockler, H., Grumberg, O., Yadgar, A.: Efficient automatic STE refinement using responsibility. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 233–248. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_17

    Chapter  Google Scholar 

  4. Chockler, H., Halpern, J.Y.: Responsibility and blame: A structural-model approach. JAIR 22, 93–115 (2004)

    Article  MATH  Google Scholar 

  5. Chockler, H., Kroening, D., Sun, Y.: Explanations for occluded images. In: Proceedings of ICCV 2021, pp. 1214–1223. IEEE (2021)

    Google Scholar 

  6. Gou, M.S., et al.: Towards understanding causality-a retrospective study of using explanations in interactions between a humanoid robot and autistic children. In: Proceedings of (RO-MAN). IEEE (2022)

    Google Scholar 

  7. Halpern, J.Y.: Actual Causality. MIT Press (2016)

    Google Scholar 

  8. Hamilton, A.F.C., Brindley, R., Frith, U.: Visual perspective taking impairment in children with autistic spectrum disorder. Cognition 113(1), 37–44 (2009)

    Article  Google Scholar 

  9. Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI: Challenges and prospects. arXiv preprint arXiv:1812.04608 (2018)

  10. Lakatos, G., Wood, L.J., Syrdal, D.S., Robins, B., Zaraki, A., Dautenhahn, K.: Robot-mediated intervention can assist children with autism to develop visual perspective taking skills. J. Behav. Robot. 12(1), 87–101 (2021)

    Article  Google Scholar 

  11. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_16

    Chapter  MATH  Google Scholar 

  12. Nomura, T., Kanda, T., Suzuki, T.: Experimental investigation into influence of negative attitudes toward robots on human-robot interaction. AI Soc. 20(2), 138–150 (2006)

    Article  Google Scholar 

  13. Robins, B., Dautenhahn, K., Te Boekhorst, R., Billard, A.: Robotic assistants in therapy and education of children with autism. Univ. Access Inf. Soc. 4(2), 105–120 (2005)

    Article  Google Scholar 

  14. Rutherford, M.D., Subiaul, F.: Children with autism spectrum disorder have an exceptional explanatory drive. Autism 20(6), 744–753 (2016)

    Article  Google Scholar 

  15. Wood, L.J., Zaraki, A., Robins, B., Dautenhahn, K.: Developing Kaspar: a Humanoid Robot for Children with Autism. Int. J. Soc. Robot. 13(3), 491–508 (2021)

    Article  Google Scholar 

  16. Woolson, R.F.: Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials, pp. 1–3 (2007)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the UKRI TAS Hub, Grant Award Reference EP/V00784X/1 and UKRI TAS Node in Verifiability, Grant Award Reference EP/V026801/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Araujo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Araujo, H. et al. (2022). Kaspar Causally Explains. In: Cavallo, F., et al. Social Robotics. ICSR 2022. Lecture Notes in Computer Science(), vol 13818. Springer, Cham. https://doi.org/10.1007/978-3-031-24670-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24670-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24669-2

  • Online ISBN: 978-3-031-24670-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics