Nothing Special   »   [go: up one dir, main page]

Skip to main content

Design and Preliminary Validation of Social Assistive Humanoid Robot with Gesture Expression Features for Mental Health Treatment of Isolated Patients in Hospitals

  • Conference paper
  • First Online:
Social Robotics (ICSR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13818))

Included in the following conference series:

Abstract

Social and assistive robots have been widely discussed in the context of psychological interventions. These studies have confirmed that facial and body expressions increase perceived safety during human-robot interaction. In this paper, we present the design of a social assistive humanoid robot with articulated robotic arms intended to deliver telepsychological interventions. The design of the robot is presented, including the description of its features for interactive communication. The robot’s design and basic nonverbal communication were evaluated through an online behavioral experiment designed to examine the perceived valence and meaning of its gestures and the overall appraisal of its appearance. We found that the design of the telepresence robot was positively assessed by a sample (N = 34) of STEM-related participants according to Godspeed metrics. Moreover, we observed that the robot was able to perform gestures that were correctly identified and discerned in terms of their valence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stasse , O., Flayols, T.: An overview of humanoid robots technologies. In: Venture, G., Laumond, J.-P., Watier, B. (eds.) Biomechanics of Anthropomorphic Systems, vol. 124, pp. 281–310. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93870-713

  2. Rabbitt, S.M., Kazdin, A.E., Scassellati, B.: Integrating socially assistive robotics into mental healthcare interventions: applications and recommendations for expanded use. Clin. Psychol. Rev. 35, 35–46 (2015). https://doi.org/10.1016/j.cpr.2014.07.001

    Article  Google Scholar 

  3. Feil-Seifer, D., Mataric, M.J.: Socially assistive robotics. In: 9th International Conference on Rehabilitation Robotics, ICORR 2005, Chicago, IL, USA, pp. 465–468 (2005). https://doi.org/10.1109/ICORR.2005.1501143

  4. . Lane, G.W., et al.: Effectiveness of a social robot, ‘Paro’, in a VA long-term care setting. Psychol. Serv. 13(3), 292–299 (2016). https://doi.org/10.1037/ser0000080

  5. ) Lopez-Caudana, E., Eduardo Baltazar Reyes, G., Ponce Cruz, P.: Socially assistive robotics: state-of-the-art scenarios in Mexico. In: Grau, A., Wang, Z. (eds.) Industrial Robotics - New Paradigms, IntechOpen (2020). https://doi.org/10.5772/intechopen.91446

  6. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Rob. Auton. Syst. 42(3–4), 143–166 (2003). https://doi.org/10.1016/S0921-8890(02)00372-X

    Article  MATH  Google Scholar 

  7. Alves-Oliveira, P., Orr, A., Björling, E.A., Cakmak, M.: Connecting the dots of social robot design from interviews with robot creators. Front. Robot. AI 9, 720799 (2022). https://doi.org/10.3389/frobt.2022.720799

    Article  Google Scholar 

  8. Costescu, C.A., Vanderborght, B., David, D.O.: The effects of robot-enhanced psychotherapy: a meta-analysis. Rev. Gener. Psychol. 18(2), 127–136 (2014). https://doi.org/10.1037/gpr0000007

    Article  Google Scholar 

  9. Rasouli, S., Gupta, G., Nilsen, E., Dautenhahn, K.: Potential applications of social robots in robot-assisted interventions for social anxiety. Int. J. Soc. Rob. (2022). https://doi.org/10.1007/s12369-021-00851-0.

  10. Yuan, F., Klavon, E., Liu, Z., Lopez, R.P., Zhao, X.: A systematic review of robotic rehabilitation for cognitive training. Front. Robot. AI 8, 605715 (2021). https://doi.org/10.3389/frobt.2021.605715

    Article  Google Scholar 

  11. Shen, Z., Elibol, A., Chong, N.Y.: Understanding nonverbal communication cues of human personality traits in human-robot interaction. IEEE/CAA J. Autom. Sinica 7(6), 1465–1477 (2020). https://doi.org/10.1109/JAS.2020.1003201

    Article  Google Scholar 

  12. Zabala, U., Rodriguez, I., Martínez-Otzeta, J.M., Lazkano, E.: Expressing robot personality through talking body language. Appl. Sci. 11(10), 4639 (2021). https://doi.org/10.3390/app11104639

    Article  Google Scholar 

  13. Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., Sabanovic, S.: Human-robot interaction: an introduction, p. 264 (2020). https://doi.org/10.1017/9781108676649

  14. Blut, M., Wang, C., Wünderlich, N.V., Brock, C.: Understanding anthropomorphism in service provision: a meta-analysis of physical robots, chatbots, and other AI. J. Acad. Mark. Sci. 49(4), 632–658 (2021). https://doi.org/10.1007/s11747-020-00762-y

    Article  Google Scholar 

  15. Zabala, U., Rodriguez, I., Martínez-Otzeta, J.M., Lazkano, E.: Modeling and evaluating beat gestures for social robots. Multimedia Tools Appl. 81(3), 3421–3438 (2022). https://doi.org/10.1007/s11042-021-11289-x

    Article  Google Scholar 

  16. Riek, L.D., Paul, P.C., Robinson, P.: When my robot smiles at me: enabling human-robot rapport via real-time head gesture mimicry. J. Multimodal User Interfaces 3(1–2), 99–108 (2010). https://doi.org/10.1007/s12193-009-0028-2

    Article  Google Scholar 

  17. Heinonen, K.: Positive and negative valence influencing consumer engagement. J. Serv. Theory Pract. 28(2), 147–169 (2018). https://doi.org/10.1108/JSTP-02-2016-0020

    Article  Google Scholar 

  18. Xu, J., Broekens, J., Hindriks, K., Neerincx, M.A.: Mood contagion of robot body language in human robot interaction. Auton. Agents Multi-Agent Syst. 29(6), 1216–1248 (2015). https://doi.org/10.1007/s10458-015-9307-3

    Article  Google Scholar 

  19. Castillo, J.C., Alonso-Martín, F., Cáceres-Domínguez, D., Malfaz, M., Salichs, M.A.: The influence of speed and position in dynamic gesture recognition for human-robot interaction. J. Sensors 2019, 1–12 (2019). https://doi.org/10.1155/2019/7060491

    Article  Google Scholar 

  20. . Story, M., Webb, P., Fletcher, S.R., Tang, G., Jaksic, C., Carberry, J.: Do speed and proximity affect human-robot collaboration with an industrial robot arm?. Int. J. Soc. Rob. (2022). https://doi.org/10.1007/s12369-021-00853-y.

  21. Isabet, B., Pino, M., Lewis, M., Benveniste, S., Rigaud, A.-S.: Social telepresence robots: a narrative review of experiments involving older adults before and during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 18(7), Art. no. 7 (2021). https://doi.org/10.3390/ijerph18073597

  22. Pu, L., Moyle, W., Jones, C., Todorovic, M.: The effectiveness of social robots for older adults: a systematic review and meta-analysis of randomized controlled studies. Gerontologist 59(1), e37–e51 (2019). https://doi.org/10.1093/geront/gny046

    Article  Google Scholar 

  23. Marchetti, A., Di Dio, C., Manzi, F., Massaro, D.: Robotics in clinical and developmental psychology. Compre. Clin. Psychol., 121–140 (2022). https://doi.org/10.1016/B978-0-12-818697-8.00005-4

  24. Nomura, T., Kanda, T., Suzuki, T., Yamada, S.: Do people with social anxiety feel anxious about interacting with a robot? AI Soc. 35(2), 381–390 (2019). https://doi.org/10.1007/s00146-019-00889-9

    Article  Google Scholar 

  25. Hempel, S., et al.: Evidence map of mindfulness. VA-ESP Project #05-226 (2014)

    Google Scholar 

  26. Jeong, S. et al.: A social robot to mitigate stress, anxiety, and pain in hospital pediatric care. In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts, Portland Oregon USA, pp. 103–104 (2015). https://doi.org/10.1145/2701973.2702028

  27. Aly, A., Tapus, A.: A model for synthesizing a combined verbal and nonverbal behavior based on personality traits in human-robot interaction. In: 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Tokyo, Japan, pp. 325–332 (2013). https://doi.org/10.1109/HRI.2013.6483606

  28. Bartneck, C., Croft, E., Kulic, D., Zoghbi, S.: Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc. Rob. 1, 71–81 (2009). https://doi.org/10.1007/s12369-008-0001-3

    Article  Google Scholar 

  29. Peirce, J., et al.: PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51(1), 195–203 (2019). https://doi.org/10.3758/s13428-018-01193-y

    Article  Google Scholar 

  30. Vallat, P.: Statistics in python. J. Open Source Softw. 3(31), 1026 (2018). https://doi.org/10.21105/joss.01026.

  31. Waskom, M.L.: Seaborn: statistical data visualization. J. Open Source Softw. 6(60) (2021). https://doi.org/10.21105/joss.03021

  32. Paredes Venero, R., Davila, A.: Experimental research methodology and statistics insights. In: Jost, C., et al. (eds.) Human-Robot Interaction: Evaluation Methods and Their Standardization, pp. 333–353. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42307-013

  33. Weiss, A., Bartneck, C.: Meta analysis of the usage of the Godspeed Questionnaire Series. In: 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Kobe, Japan, pp. 381–388 (2015). https://doi.org/10.1109/ROMAN.2015.7333568

Download references

Acknowledgment

The authors wish to thank the National Fund for Scientific, Technological Development and Technological Innovation (FONDECYT) through its national program PROCIENCIA (160-2020-FONDECYT) and the Pontificia Universidad Católica del Perú (PUCP) through its funding program CAP (PI0516 - ID 627) for providing the means and resources for this research and development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Arce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arce, D. et al. (2022). Design and Preliminary Validation of Social Assistive Humanoid Robot with Gesture Expression Features for Mental Health Treatment of Isolated Patients in Hospitals. In: Cavallo, F., et al. Social Robotics. ICSR 2022. Lecture Notes in Computer Science(), vol 13818. Springer, Cham. https://doi.org/10.1007/978-3-031-24670-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24670-8_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24669-2

  • Online ISBN: 978-3-031-24670-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics