Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multilingual Fake News Detection with Satire

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2019)

Abstract

The information spread through the Web influences politics, stock markets, public health, people’s reputation and brands. For these reasons, it is crucial to filter out false information. In this paper, we compare different automatic approaches for fake news detection based on statistical text analysis on the vaccination fake news dataset provided by the Storyzy company. Our CNN works better for discrimination of the larger classes (fake vs trusted) while the gradient boosting decision tree with feature stacking approach obtained better results for satire detection. We contribute by showing that efficient satire detection can be achieved using merged embeddings and a specific model, at the cost of larger classes. We also contribute by merging redundant information on purpose in order to better predict satire news from fake news and trusted news.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://storyzy.com/?lang=en.

  2. 2.

    HackaTAL : https://hackatal.github.io/2018/.

  3. 3.

    https://www.nltk.org/.

  4. 4.

    https://docs.python.org/2/library/difflib.html.

  5. 5.

    https://github.com/Microsoft/LightGBM.

References

  1. Fake News Student Twitter Data Challenge | DiscoverText, December 2016. http://discovertext.com/2016/12/28/fake-news-detection-a-twitter-data-challenge-for-students/

  2. How to spot fake news, November 2016. http://www.factcheck.org/2016/11/how-to-spot-fake-news/

  3. Fake news challenge (2017). http://www.fakenewschallenge.org/

  4. Adair, B.: Principles of politifact and the truth-o-meter. PolitiFact.com. February 21, 2011 (2011)

    Google Scholar 

  5. Atanasova, M., Comita, P., Melina, S., Stoyanova, M.: Automatic Detection of Deception. Non-verbal communication (2014). https://nvc.uvt.nl/pdf/7.pdf

  6. Bevendorff, J., Stein, B., Hagen, M., Potthast, M.: Elastic ChatNoir: search engine for the ClueWeb and the common crawl. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 820–824. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_83

    Chapter  Google Scholar 

  7. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Article  Google Scholar 

  8. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM (2011)

    Google Scholar 

  9. Conroy, N., Rubin, V., Chen, Y.: Automatic deception detection: methods for finding fake news (2015)

    Google Scholar 

  10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  Google Scholar 

  11. Deacon, M.: In a world of post-truth politics, andrea leadsom will make the perfect PM, September 2016, http://www.telegraph.co.uk/news/2016/07/09/in-a-world-of-post-truth-politics-andrea-leadsom-will-make-the-p/

  12. Egan, T.: The post-truth presidency, April 2016. http://www.nytimes.com/2016/11/04/opinion/campaign-stops/the-post-truth-presidency.html

  13. Feldman, B.: Here’s a chrome extension that will flag fake-news sites for you (2016), http://nymag.com/selectall/2016/11/heres-a-browser-extension-that-will-flag-fake-news-sites.html

  14. Gahirwal, M., Moghe, S., Kulkarni, T., Khakhar, D., Bhatia, J.: Fake news detection. Int. J. Adv. Res. Ideas Innov. Technol. 4(1), 817–819 (2018)

    Google Scholar 

  15. Hoerl, A., Kennard, R.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  Google Scholar 

  16. Hunt, E.: What is fake news? How to spot it and what you can do to stop it. The Guardian, December 2016. https://www.theguardian.com/media/2016/dec/18/what-is-fake-news-pizzagate

  17. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 3149–3157 (2017)

    Google Scholar 

  18. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)

    Article  Google Scholar 

  19. Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks. In: IJCAI, pp. 3818–3824 (2016)

    Google Scholar 

  20. Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.F.: Detect rumors using time series of social context information on microblogging websites. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1751–1754. ACM (2015)

    Google Scholar 

  21. Mandonnet, E., Paquette, E.: Les candidats face aux intox de Web. L’Express 3429, 28–31 (2017)

    Google Scholar 

  22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  23. Morris, D.: Eli Pariser’s crowdsourced brain trust is tackling fake news | Fortune.com (2016). http://fortune.com/2016/11/27/eli-pariser-fake-news-brain-trust/

  24. Rapoza, K.: Can ’Fake News’ impact the stock market? February 2017. https://www.forbes.com/sites/kenrapoza/2017/02/26/can-fake-news-impact-the-stock-market/

  25. Rashkin, H., Choi, E., Jang, J., Volkova, S., Choi, Y.: Truth of varying shades: analyzing language in fake news and political fact-checking. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2931–2937 (2017)

    Google Scholar 

  26. Solon, O., Wong, J.: Facebook’s plan to tackle fake news raises questions over limitations. The Guardian, December 2016. https://www.theguardian.com/technology/2016/dec/16/facebook-fake-news-system-problems-fact-checking

  27. Twyman, N., Proudfoot, J., Schuetzler, R., Elkins, A., Derrick, D.: Robustness of multiple indicators in automated screening systems for deception detection. J. Manage. Inf. Syst. 32(4), 215–245 (2015). http://www.jmis-web.org/articles/1273

  28. Volkova, S., Shaffer, K., Jang, J., Hodas, N.: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 647–653 (2017)

    Google Scholar 

  29. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature hashing for large scale multitask learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1113–1120. ACM (2009)

    Google Scholar 

  30. Zhou, L., Burgoon, J., Nunamaker, J., Twitchell, D.: Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communication. Group Decis. Negot. 13, 81–106 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaël Guibon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guibon, G., Ermakova, L., Seffih, H., Firsov, A., Noé-Bienvenu, G.L. (2023). Multilingual Fake News Detection with Satire. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2019. Lecture Notes in Computer Science, vol 13452. Springer, Cham. https://doi.org/10.1007/978-3-031-24340-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24340-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24339-4

  • Online ISBN: 978-3-031-24340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics