Abstract
The information spread through the Web influences politics, stock markets, public health, people’s reputation and brands. For these reasons, it is crucial to filter out false information. In this paper, we compare different automatic approaches for fake news detection based on statistical text analysis on the vaccination fake news dataset provided by the Storyzy company. Our CNN works better for discrimination of the larger classes (fake vs trusted) while the gradient boosting decision tree with feature stacking approach obtained better results for satire detection. We contribute by showing that efficient satire detection can be achieved using merged embeddings and a specific model, at the cost of larger classes. We also contribute by merging redundant information on purpose in order to better predict satire news from fake news and trusted news.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fake News Student Twitter Data Challenge | DiscoverText, December 2016. http://discovertext.com/2016/12/28/fake-news-detection-a-twitter-data-challenge-for-students/
How to spot fake news, November 2016. http://www.factcheck.org/2016/11/how-to-spot-fake-news/
Fake news challenge (2017). http://www.fakenewschallenge.org/
Adair, B.: Principles of politifact and the truth-o-meter. PolitiFact.com. February 21, 2011 (2011)
Atanasova, M., Comita, P., Melina, S., Stoyanova, M.: Automatic Detection of Deception. Non-verbal communication (2014). https://nvc.uvt.nl/pdf/7.pdf
Bevendorff, J., Stein, B., Hagen, M., Potthast, M.: Elastic ChatNoir: search engine for the ClueWeb and the common crawl. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 820–824. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_83
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM (2011)
Conroy, N., Rubin, V., Chen, Y.: Automatic deception detection: methods for finding fake news (2015)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Deacon, M.: In a world of post-truth politics, andrea leadsom will make the perfect PM, September 2016, http://www.telegraph.co.uk/news/2016/07/09/in-a-world-of-post-truth-politics-andrea-leadsom-will-make-the-p/
Egan, T.: The post-truth presidency, April 2016. http://www.nytimes.com/2016/11/04/opinion/campaign-stops/the-post-truth-presidency.html
Feldman, B.: Here’s a chrome extension that will flag fake-news sites for you (2016), http://nymag.com/selectall/2016/11/heres-a-browser-extension-that-will-flag-fake-news-sites.html
Gahirwal, M., Moghe, S., Kulkarni, T., Khakhar, D., Bhatia, J.: Fake news detection. Int. J. Adv. Res. Ideas Innov. Technol. 4(1), 817–819 (2018)
Hoerl, A., Kennard, R.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)
Hunt, E.: What is fake news? How to spot it and what you can do to stop it. The Guardian, December 2016. https://www.theguardian.com/media/2016/dec/18/what-is-fake-news-pizzagate
Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 3149–3157 (2017)
Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)
Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks. In: IJCAI, pp. 3818–3824 (2016)
Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.F.: Detect rumors using time series of social context information on microblogging websites. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1751–1754. ACM (2015)
Mandonnet, E., Paquette, E.: Les candidats face aux intox de Web. L’Express 3429, 28–31 (2017)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Morris, D.: Eli Pariser’s crowdsourced brain trust is tackling fake news | Fortune.com (2016). http://fortune.com/2016/11/27/eli-pariser-fake-news-brain-trust/
Rapoza, K.: Can ’Fake News’ impact the stock market? February 2017. https://www.forbes.com/sites/kenrapoza/2017/02/26/can-fake-news-impact-the-stock-market/
Rashkin, H., Choi, E., Jang, J., Volkova, S., Choi, Y.: Truth of varying shades: analyzing language in fake news and political fact-checking. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2931–2937 (2017)
Solon, O., Wong, J.: Facebook’s plan to tackle fake news raises questions over limitations. The Guardian, December 2016. https://www.theguardian.com/technology/2016/dec/16/facebook-fake-news-system-problems-fact-checking
Twyman, N., Proudfoot, J., Schuetzler, R., Elkins, A., Derrick, D.: Robustness of multiple indicators in automated screening systems for deception detection. J. Manage. Inf. Syst. 32(4), 215–245 (2015). http://www.jmis-web.org/articles/1273
Volkova, S., Shaffer, K., Jang, J., Hodas, N.: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 647–653 (2017)
Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature hashing for large scale multitask learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1113–1120. ACM (2009)
Zhou, L., Burgoon, J., Nunamaker, J., Twitchell, D.: Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communication. Group Decis. Negot. 13, 81–106 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Guibon, G., Ermakova, L., Seffih, H., Firsov, A., Noé-Bienvenu, G.L. (2023). Multilingual Fake News Detection with Satire. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2019. Lecture Notes in Computer Science, vol 13452. Springer, Cham. https://doi.org/10.1007/978-3-031-24340-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-24340-0_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-24339-4
Online ISBN: 978-3-031-24340-0
eBook Packages: Computer ScienceComputer Science (R0)