Abstract
Mobile manipulation robots can be deployed to handle various hazardous tasks such as fire fighting, disaster relief, and bomb disposal. Currently, the high-level control of mobile manipulation systems mostly relies on human teleoperation. This paper designs a novel dual-arm mobile manipulation robot and proposes a safety-oriented teleoperation strategy for it. Unlike traditional dual-arm setup which mimics humans, a functional complementary design is adopted by using a longer arm and a shorter arm. The longer arm can achieve a 360° wide-range manipulation around the base, while the shorter arm is aimed at more dexterous manipulation in the front of the base. Then a teleoperation system is designed based on the V-REP software. Three aspects are taken into account to guarantee safety during operation, including the workspace protection based on virtual walls, the self-collision protection based on minimal distance calculation, and the configuration-switch protection based on open motion planning library (OMPL). The effectiveness of the proposed method is verified through simulations and experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Delmerico, J., Mintchev, S., Giusti, A., et al.: The current state and future outlook of rescue robotics. J. Field Robotics 36(7), 1171–1191 (2019)
Oliveira, J., Farconi, L., Pinto, A., et al.: A review on locomotion systems for RoboCup rescue league robots. In: Robot World Cup, pp. 265–276 (2017)
Bledt, G., Powell, M., Katz, B., et al.: MIT Cheetah 3: design and control of a robust, dynamic quadruped robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2245–2252 (2018)
Kostavelis, I., Gasteratos, A.: Robots in crisis management: a survey. In: Dokas, I.M., Bellamine-Ben Saoud, N., Dugdale, J., Díaz, P. (eds.) ISCRAM-med 2017. LNBIP, vol. 301, pp. 43–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67633-3_4
Bjelonic, M., SankarMarko, P., Bellicosoet, C., et al.: Rolling in the deep – hybrid locomotion for wheeled-legged robots using online trajectory optimization. IEEE Robot. Autom. Lett. 5(2), 3626–3633 (2020)
Pellenz, J., Jacoff, A., Kimura, T., Mihankhah, E., Sheh, R., Suthakorn, J.: RoboCup rescue robot league. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 673–685. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18615-3_55
Merriaux, P., Rossi, R., Boutteau, R., et al.: The VIKINGS autonomous inspection robot: competing in the ARGOS challenge. IEEE Robot. Autom. Mag. 26(1), 21–34 (2019)
Michael, K., Michael, M.: The PackBots are coming: boosting security at the 2014 FIFA world cup. IEEE Consum. Electron. Mag. 3(3), 59–61 (2014)
Kashiri, N., Baccelliere, L., Muratore, L., et al.: CENTAURO: a hybrid locomotion and high power resilient manipulation platform. IEEE Robot. Autom. Lett. 4(2), 1595–1602 (2019)
Rohmer, E., Singh, S., Freese. M.: V-REP: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1321–1326 (2013)
Li, S., Jiang, J., Ruppel, P., et al.: A mobile robot hand-arm teleoperation system by vision and IMU. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10900–10906 (2020)
Siciliano, B., Khatib, O.: Springer Handbook of Robotics, pp. 1085–1108. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-30301-5
Kim, H., Ha, C., Ahn, J., et al.: User interface design for semi-autonomous teleoperation of manipulator-stage system on flexible beam. In: 2018 15th International Conference on Ubiquitous Robots (UR), pp. 96–102 (2018)
Kohlbrecher, S., Stryk, O.V.: From RoboCup rescue to supervised autonomous mobile robots for remote inspection of industrial plants. KI - Künstliche Intelligenz 30(3–4), 311–314 (2016). https://doi.org/10.1007/s13218-016-0446-8
Ritzberger, N., Emenshuber, S., Schubert, G., et al.: Mobile robot for exploration and manipulation inside a nuclear power plant. Ann. DAAAM Proc. 28 (2017)
Takemori, T., Miyake, M., Hirai, T., et al.: development of the multifunctional rescue robot FUHGA2 and evaluation at the world robot summit 2018. Adv. Robot. 34(2), 119–131 (2020)
Lau, C., Byl, K.: Smooth RRT-connect: an extension of RRT-connect for practical use in robots. In: 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), pp. 1–7 (2015)
Acknowledgements
This work was supported by Shenzhen Science Fund for Distinguished Young Scholars (RCJC20210706091946001), Guangdong Special Branch Plan for Young Talent with Scientific and Technological Innovation (2019TQ05Z111), and National Natural Science Foundation of China (62003188, U1813216).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Guo, J., Ye, L., Liu, H., Wang, X., Liang, L., Liang, B. (2022). Safety-Oriented Teleoperation of a Dual-Arm Mobile Manipulation Robot. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13458. Springer, Cham. https://doi.org/10.1007/978-3-031-13841-6_70
Download citation
DOI: https://doi.org/10.1007/978-3-031-13841-6_70
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13840-9
Online ISBN: 978-3-031-13841-6
eBook Packages: Computer ScienceComputer Science (R0)