Nothing Special   »   [go: up one dir, main page]

Skip to main content

Some Results on the Dominance Relation Between Conjunctions and Disjunctions

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13395))

Included in the following conference series:

  • 1839 Accesses

Abstract

The dominance relations on the class of aggregation operators have the vital application in various areas of science, including fuzzy set theory, probabilistic metric space. The dominance relations between conjunctions and disjunctions are studied in this paper. We characterize the conjunctions (disjunctions) which dominate all triangular conorms (triangular norms). Moreover, as a generalization of the dominance relation, the weak dominance relation between conjunctions and disjunctions is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tardiff, R.M.: Topologies for probabilistic metric spaces. Pacific J. Math. 65(1), 233–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Schweizer, B., Sklar, A.: Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York (1983)

    Google Scholar 

  3. Saminger, S., Mesiar, R., Bodenhofer, U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10(1), 11–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodenhofer, U.: A Similarity-Based Generalization of Fuzzy Orderings. Universitätsverlag Rudolf Trauner Linz, Austria (1999)

    MATH  Google Scholar 

  5. De Baets, B., Mesiar, R.: T-partitions. Fuzzy Sets Syst. 97(2), 211–223 (1998)

    Article  MATH  Google Scholar 

  6. Petrĺłk, M.: On generalized mulholland inequality and dominance on nilpotent triangular norms. In: 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), pp. 1–6 (2017)

    Google Scholar 

  7. Petrĺłk, M.: Dominance on strict triangular norms and Mulholland inequality. Fuzzy Sets Syst. 335, 3–17 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dĺłaz, S., Montes, S., De Baets, B.: Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Syst. 15(2), 275–286 (2007)

    Article  Google Scholar 

  9. Bentkowska, U., Król, A.: Preservation of fuzzy relation properties based on fuzzy conjunctions and disjunctions during aggregation process. Fuzzy Sets Syst. 291, 98–113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mesiar, R., Saminger, S.: Domination of ordered weighted averaging operators over t-norms. Soft. Comput. 8(8), 562–570 (2004)

    Article  MATH  Google Scholar 

  11. Alsina, C., Schweizer, B., Frank, M.J.: Associative Functions: Triangular Norms and Copulas. World Scientific, Hackensack (2006)

    Google Scholar 

  12. Martín, J., Mayor, G., Suñer, J.: On binary operations with finite external range. Fuzzy Sets Syst. 146(1), 19–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mezzomo, I., Frazão, H., Bedregal, B., da Silva Menezes, M.: On the dominance relation between ordinal sums of quasi-overlap functions. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7 (2020)

    Google Scholar 

  14. Petrĺłk, M.: Dominance on continuous Archimedean triangular norms and generalized Mulholland inequality. Fuzzy Sets Syst. 403, 88–100 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Su, Y., Riera, J.V., Ruiz-Aguilera, D., Torrens, J.: The modularity condition for uninorms revisited. Fuzzy Sets Syst. 357, 27–46 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Drewniak, J., Drygaś, P., Dudziak, U.: Relation of domination, Abstracts FSTA, pp. 43–44 (2004)

    Google Scholar 

  17. Drewniak, J., Król, A.: On the problem of domination between triangular norms and conorms. J. Electr. Eng. 56(12), 59–61 (2005)

    MATH  Google Scholar 

  18. Sarkoci, P.: Conjunctors dominating classes of t-conorms. In: International Conference on fuzzy Sets Theory and its Applications, FSTA (2006)

    Google Scholar 

  19. Bentkowska, U., Drewniak, J., Drygaś, P., Król, A., Rak, E.: Dominance of binary operations on posets. In: Atanassov, K.T., et al. (eds.) IWIFSGN 2016. AISC, vol. 559, pp. 143–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65545-1_14

    Chapter  Google Scholar 

  20. De Cooman, G., Kerre, E.E.: Order norms on bounded partially ordered sets. J. Fuzzy Math. 2(2), 281–310 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Springer, New York (2013). https://doi.org/10.1007/978-94-015-9540-7

  22. Drygaś, P., Król, A.: Some remarks on the domination between conjunctions and disjunctions. Ann. Univ. Paedagog. Crac. Stud. Math. 45(1), 67–75 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Nature Science Foundation of China under Grant 61977040 and Natural Science Foundation of Shandong Province under Grant ZR2019MF055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Li, G. (2022). Some Results on the Dominance Relation Between Conjunctions and Disjunctions. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2022. Lecture Notes in Computer Science(), vol 13395. Springer, Cham. https://doi.org/10.1007/978-3-031-13832-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13832-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13831-7

  • Online ISBN: 978-3-031-13832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics