Nothing Special   »   [go: up one dir, main page]

Skip to main content

FES-Based Hand Movement Control via Iterative Learning Control with Forgetting Factor

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13456))

Included in the following conference series:

  • 2527 Accesses

Abstract

Functional electrical stimulation (FES) is an effective approach to restore hand movement function for patients with stroke. In this paper, a multi-electrode hand rehabilitation system is presented. Iterative learning control (ILC) with forgetting factor algorithm is employed to achieve an accuracy position control of multi-joint hand movement. A mapping matrix is identified to model the gains from the multi-electrode inputs to the multiple joints of the hand. The convergence conditions of ILC with forgetting factor for the proposed method are analyzed. Finally, experiments on healthy subjects are carried out to verify the performance of the proposed control method.

This work is partially supported by the National Natural Science Foundation of China (62103376), China Postdoctoral Science Foundation (2018M632801), Science & Technology Research Project in Henan Province of China (212102310253) and Joint fund of Science & Technology Department of Liaoning Province and State Key Laboratory of Robotics (2021-KF-22-10). & National Natural Science Foundation of China (U1813214).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Langhorne, P.P., Bernhardt, P.J., Kwakkel, G.: Stroke care 2: stroke rehabilitation. Lancet 377(9778), 1693–1702 (2011)

    Article  Google Scholar 

  2. Garratt, E., Mistry, D., Boyle, C., Fellerdale, M., Southcott, V., King, S.: Arming our patients: empowering patients to increase self-directed upper-limb activity at the Oxfordshire stroke rehabilitation unit. Physiotherapy 113, e50–e51 (2021)

    Article  Google Scholar 

  3. Dobkin, B.H.: Strategies for stroke rehabilitation. Lancet Neurol. 3(9), 528–536 (2004)

    Article  Google Scholar 

  4. Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F.H., Christie, B.R.: Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague–Dawley rats in vivo. Neuroscience 124(1), 71–79 (2004)

    Article  Google Scholar 

  5. Annetta, N.V., et al.: A high definition noninvasive neuromuscular electrical stimulation system for cortical control of combinatorial rotary hand movements in a human with tetraplegia. IEEE Trans. Biomed. Eng. 66(4), 910–919 (2019). https://doi.org/10.1109/TBME.2018.2864104

    Article  Google Scholar 

  6. Bae, D.-Y., Shin, J.-H., Kim, J.-S.: Effects of dorsiflexor functional electrical stimulation compared to an ankle/foot orthosis on stroke-related genu recurvatum gait. J. Phys. Ther. Sci. 31(11), 865–868 (2019). https://doi.org/10.1589/jpts.31.865

    Article  Google Scholar 

  7. Lim, J., et al.: Patient-specific functional electrical stimulation strategy based on muscle synergy and walking posture analysis for gait rehabilitation of stroke patients. J. Int. Med. Res. 49(5), 425–1385 (2021)

    Article  Google Scholar 

  8. Usman, H., Zhou, Y., Metcalfe, B., Zhang, D.: A functional electrical stimulation system of high-density electrodes with auto-calibration for optimal selectivity. IEEE Sens. J. 20(15), 8833–8843 (2020)

    Article  Google Scholar 

  9. RaviChandran, N., Teo, M.Y., Aw, K., McDaid, A.: Design of transcutaneous stimulation electrodes for wearable neuroprostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 28(7), 1651–1660 (2020). https://doi.org/10.1109/TNSRE.2020.2994900

    Article  Google Scholar 

  10. Kutlu, M., Freeman, C.T., Hallewell, E., Hughes, A.M., Laila, D.S.: Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations. Med. Eng. Phys. 38(4), 366–379 (2016)

    Article  Google Scholar 

  11. Madady, A.: An extended PID type iterative learning control. Int. J. Control Autom. Syst. 11(3), 470–481 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chen, S., Wen, J.T.: Industrial robot trajectory tracking control using multi-layer neural networks trained by iterative learning control. Robotics 10(1), 50 (2021)

    Article  Google Scholar 

  13. Chen, W., Li, J., Li, J.: Practical adaptive iterative learning control framework based on robust adaptive approach. Asian J. Control 13(1), 85–93 (2010)

    Article  MathSciNet  Google Scholar 

  14. Hussain, I., Ruan, X., Liu, C., Liu, Y.: Linearly monotonic convergence and robustness of p-type gain-optimized iterative learning control for discrete-time singular systems. IEEE Access 9, 58337–58350 (2021)

    Article  Google Scholar 

  15. Wang, H., Dong, J., Wang, Y.: Research on open-closed-loop iterative learning control with variable forgetting factor of mobile robots. Discret. Dyn. Nat. Soc. 2016, 1–6 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benyan Huo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, G., Zeng, Q., Huo, B., Zhao, X., Zhang, D. (2022). FES-Based Hand Movement Control via Iterative Learning Control with Forgetting Factor. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13456. Springer, Cham. https://doi.org/10.1007/978-3-031-13822-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13822-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13821-8

  • Online ISBN: 978-3-031-13822-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics