Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-source Data-Based Deep Tensor Factorization for Predicting Disease-Associated miRNA Combinations

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1791 Accesses

Abstract

MicroRNAs (miRNAs) play a significant role in the occurrence and development of complex diseases. The regulatory level of multiple miRNAs is stronger than that of a single miRNA. Therefore, using miRNA combinations to treat complex diseases has become a promising strategy, which provides great insights for exploring disease-associated miRNA combinations and comprehending the miRNA synergistic mechanism. However, current researches mainly focus on the miRNA-disease binary association, or merely the synergetic miRNAs on specific diseases, which may cause incomplete understanding of the pathogenesis of complex diseases. In this work, we present a novel tensor factorization model, name MAGTF, to predict disease-associated miRNA combinations. MAGTF exploits a graph attention neural network to learn the node features over multi-source similarity networks. Then, a feature aggregation module is applied to capture the heterogeneous features over miRNA-disease association network. The learned features are spliced to reconstruct the association tensor for predicting disease-associated miRNA combinations. Empirical results showed the powerful predictive ability of the proposed model. Ablation study indicated the contribution of each module in MAGTF. Moreover, case studies further demonstrated the effectiveness of MAGTF in identifying potential disease-associated miRNA combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 01 November 2022

    In the original version of this chapter, the last name of Jiawei Luo was misspelled. This was corrected.

References

  1. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)

    Article  Google Scholar 

  2. Bushati, N., Cohen, S.M.: microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007)

    Article  Google Scholar 

  3. Alvarez-Garcia, I., Miska, E.A.: MicroRNA functions in animal development and human disease. Development 132, 4653–4662 (2005)

    Article  Google Scholar 

  4. Petrocca, F., et al.: E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13(3), 272–286 (2008)

    Article  Google Scholar 

  5. Skommer, J., Rana, I., Marques, F., Zhu, W., Du, Z., Charchar, F.: Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis. 5(7), e1325–e1325 (2014)

    Article  Google Scholar 

  6. Latronico, M.V., Catalucci, D., Condorelli, G.: Emerging role of microRNAs in cardiovascular biology. Circ. Res. 101(12), 1225–1236 (2007)

    Article  Google Scholar 

  7. Zhu, W., et al.: Dissection of protein interactomics highlights microRNA synergy. PLoS ONE 8(5), e63342 (2013)

    Article  Google Scholar 

  8. Bhaskaran, V., et al.: The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma. Nat. Commun. 10(1), 1–13 (2019)

    Article  MathSciNet  Google Scholar 

  9. Doench, J.G., Sharp, P.A.: Specificity of microRNA target selection in translational repression. Genes Dev. 18(5), 504–511 (2004)

    Article  Google Scholar 

  10. Li, Y., Liang, C., Wong, K.-C., Luo, J., Zhang, Z.: Mirsynergy: detecting synergistic miRNA regulatory modules by overlapping neighbourhood expansion. Bioinformatics 30(18), 2627–2635 (2014)

    Article  Google Scholar 

  11. Zhou, F., Yin, M.-M., Jiao, C.-N., Zhao, J.-X., Zheng, C.-H., Liu, J.-X.: Predicting miRNA-disease associations through deep autoencoder with multiple kernel learning. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  12. Liu, P., Luo, J., Chen, X.: miRCom: tensor completion integrating multi-view information to deduce the potential disease-related miRNA-miRNA pairs. IEEE/ACM Trans. Comput. Biol. Bioinform. 19, 1747–1759 (2020)

    Google Scholar 

  13. Sun, Z., Huang, S., Jiang, P., Hu, P.: DTF: deep tensor factorization for predicting anticancer drug synergy. Bioinformatics 36(16), 4483–4489 (2020)

    Article  Google Scholar 

  14. Liu, Y., Luo, J., Wu, H.: miRNA-disease associations prediction based on neural tensor decomposition. In: International Conference on Intelligent Computing, pp. 312–323 (2021)

    Google Scholar 

  15. Kozomara, A., Birgaoanu, M., Griffiths-Jones, S.: miRBase: from microRNA sequences to function. Nucleic Acids Res. 47(D1), D155–D162 (2019)

    Article  Google Scholar 

  16. Huang, Z., et al.: HMDD v3.0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res. 47(D1), D1013–D1017 (2019)

    Article  Google Scholar 

  17. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88(3), 265 (2000)

    Google Scholar 

  18. Ji, C., Gao, Z., Ma, X., Wu, Q., Ni, J., Zheng, C.: AEMDA: inferring miRNA–disease associations based on deep autoencoder. Bioinformatics 37(1), 66–72 (2021)

    Article  Google Scholar 

  19. Yin, M.-M., Liu, J.-X., Gao, Y.-L., Kong, X.-Z., Zheng, C.-H.: NCPLP: a novel approach for predicting microbe-associated diseases with network consistency projection and label propagation. IEEE Trans. Cybern. 52, 5079–5087 (2020)

    Article  Google Scholar 

  20. Xiao, Q., Luo, J., Liang, C., Cai, J., Ding, P.: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations. Bioinformatics 34(2), 239–248 (2018)

    Article  Google Scholar 

  21. Hwang, S., et al.: HumanNet v2: human gene networks for disease research. Nucleic Acids Res. 47(D1), D573–D580 (2019)

    Article  Google Scholar 

  22. Thekumparampil, K.K., Wang, C., Oh, S., Li, L.-J.: Attention-based graph neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735 (2018)

  23. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  24. Luo, J., Lai, Z., Shen, C., Liu, P., Shi, H.: Graph attention mechanism-based deep tensor factorization for predicting disease-associated miRNA-miRNA pairs. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 189–196 (2021)

    Google Scholar 

  25. Xu, F., et al.: dbDEMC 3.0: functional exploration of differentially expressed miRNAs in cancers of human and model organisms. bioRxiv (2022)

    Google Scholar 

  26. Farmanfarma, K.K., Mohammadian, M., Shahabinia, Z., Hassanipour, S., Salehiniya, H.: Brain cancer in the world: an epidemiological review. World Cancer Res. J. 6(5), 1–5 (2019)

    Google Scholar 

  27. Zhou, C., et al.: Combination of serum miRNAs with Cyfra21-1 for the diagnosis of non-small cell lung cancer. Cancer Lett. 367(2), 138–146 (2015)

    Article  Google Scholar 

  28. Chow, W.-H., Dong, L.M., Devesa, S.S.: Epidemiology and risk factors for kidney cancer. Nat. Rev. Urol. 7(5), 245–257 (2010)

    Article  Google Scholar 

Download references

Funding

This work has been supported by the Natural Science Foundation of China (Grant no. 61873089) and (Grant no. 62032007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

You, S., Lai, Z., Luo, J. (2022). Multi-source Data-Based Deep Tensor Factorization for Predicting Disease-Associated miRNA Combinations. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics