Nothing Special   »   [go: up one dir, main page]

Skip to main content

TBC-Unet: U-net with Three-Branch Convolution for Gliomas MRI Segmentation

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1740 Accesses

Abstract

Segmentation networks with encoder and decoder structures provide remarkable results in the segmentation of gliomas MRI. However, the network loses small-scale tumor feature information during the encoding phase due to the limitations of the traditional 3 × 3 convolutional layer, decreasing network segmentation accuracy. We designed a three-branch convolution module (TBC module) to replace the traditional convolutional layer to address the problem of small-scale tumor information loss. The TBC module is divided into three branches, each of which extracts image features using a different convolutional approach before fusing the three branches’ features as the TBC module’s output. The TBC module enables the model to learn richer small-scale tumor features during encoding. Furthermore, since the tumor area in an MRI only accounts for around 2% of the whole image, there is a problem with pixel category imbalance. We construct a new loss function to address the problem of category imbalance. Extensive experiments on BraTS datasets demonstrate that the proposed method achieves very competitive results with the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Louis, D.N., Perry, A., Reifenberger, G., et al.: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131(6), 803–820 (2016)

    Article  Google Scholar 

  2. Gonbadi, F.B., Khotanlou, H.: Glioma brain tumors diagnosis and classification in mr images based on convolutional neural networks. In: Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), pp.1–5. IEEE (2019)

    Google Scholar 

  3. Van Meir, E.G., Hadjipanayis, C.G., Norden, A.D., et al.: Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA Cancer J. Clin. 60(3), 166–193 (2010)

    Article  Google Scholar 

  4. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  5. Xiao, X., et al.: Weighted res-unet for high-quality retina vessel segmentation. In: Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 327–331. IEEE (2018)

    Google Scholar 

  6. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R.S., Bradley, A., Papa, J.P., Belagiannis, V., Nascimento, J.C., Lu, Z., Conjeti, S., Moradi, M., Greenspan, H., Madabhushi, A. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  7. Huang, H., et al.: Unet 3+: A full-scale connected unet for medical image segmentation. In: Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059. IEEE (2020)

    Google Scholar 

  8. Gu, Z., Cheng, J., Fu, H., et al.: Ce-net: Context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  9. Deng, W., et al.: MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve. In: Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, pp. 393–396. IEEE (2010)

    Google Scholar 

  10. Kaleem, M., Sanaullah, M., Hussain, M.A., Jaffar, M.A., Choi, T.-S.: Segmentation of brain tumor tissue using marker controlled watershed transform method. In: Chowdhry, B.S., Shaikh, F.K., Hussain, D.M.A., Uqaili, M.A. (eds.) IMTIC 2012. CCIS, vol. 281, pp. 222–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28962-0_22

    Chapter  Google Scholar 

  11. Menon, N., et al.: Brain tumor segmentation in MRI images using unsupervised artificial bee colony algorithm and FCM clustering. In: Proceedings of the 2015 International Conference on Communications and Signal Processing (ICCSP), pp. 0006–0009. IEEE (2015)

    Google Scholar 

  12. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  13. He, K.M., et al.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969. IEEE (2017)

    Google Scholar 

  14. Chen, L.C., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587

  15. Wu, X.D.: An iterative convolutional neural network algorithm improves electron microscopy image segmentation. arXiv preprint arXiv:1506.05849

  16. Long, J., et al.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE (2015)

    Google Scholar 

  17. Chen, Y., Wang, K., Liao, X., et al.: Channel-Unet: A spatial channel-wise convolutional neural network for liver and tumors segmentation. Front. Genet. 10, 1110 (2019)

    Article  Google Scholar 

  18. Chen, L., Bentley, P., Mori, K., et al.: DRINet for medical image segmentation. IEEE Trans. Med. Imaging 37(11), 2453–2462 (2018)

    Article  Google Scholar 

  19. Huang, G., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708. IEEE (2017)

    Google Scholar 

  20. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9. IEEE (2015)

    Google Scholar 

  21. He, K.M., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016)

    Google Scholar 

  22. Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826. IEEE (2016)

    Google Scholar 

  23. Lo, S.Y., et al.: Efficient dense modules of asymmetric convolution for real-time semantic segmentation. In: Proceedings of the ACM Multimedia Asia, pp. 1–6

    Google Scholar 

  24. Han, K., et al.: Ghostnet: More features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589. IEEE (2019)

    Google Scholar 

  25. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  26. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  27. Kaku, A., Hegde, C.V., Huang, J., et al.: DARTS: DenseUnet-based automatic rapid tool for brain segmentation. arXiv preprint arXiv:1911.05567

Download references

Acknowledgements

The work was supported by the High-level Talents Fund of Hubei University of Technology under grant No. GCRC2020016, Open Funding Project of the State Key Laboratory of Biocatalysis and Enzyme Engineering No. SKLBEE2020020 and SKLBEE2021020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Gan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Gan, H., Yang, Z. (2022). TBC-Unet: U-net with Three-Branch Convolution for Gliomas MRI Segmentation. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics