Abstract
Segmentation networks with encoder and decoder structures provide remarkable results in the segmentation of gliomas MRI. However, the network loses small-scale tumor feature information during the encoding phase due to the limitations of the traditional 3 × 3 convolutional layer, decreasing network segmentation accuracy. We designed a three-branch convolution module (TBC module) to replace the traditional convolutional layer to address the problem of small-scale tumor information loss. The TBC module is divided into three branches, each of which extracts image features using a different convolutional approach before fusing the three branches’ features as the TBC module’s output. The TBC module enables the model to learn richer small-scale tumor features during encoding. Furthermore, since the tumor area in an MRI only accounts for around 2% of the whole image, there is a problem with pixel category imbalance. We construct a new loss function to address the problem of category imbalance. Extensive experiments on BraTS datasets demonstrate that the proposed method achieves very competitive results with the state-of-the-art approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Louis, D.N., Perry, A., Reifenberger, G., et al.: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131(6), 803–820 (2016)
Gonbadi, F.B., Khotanlou, H.: Glioma brain tumors diagnosis and classification in mr images based on convolutional neural networks. In: Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), pp.1–5. IEEE (2019)
Van Meir, E.G., Hadjipanayis, C.G., Norden, A.D., et al.: Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA Cancer J. Clin. 60(3), 166–193 (2010)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Xiao, X., et al.: Weighted res-unet for high-quality retina vessel segmentation. In: Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 327–331. IEEE (2018)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R.S., Bradley, A., Papa, J.P., Belagiannis, V., Nascimento, J.C., Lu, Z., Conjeti, S., Moradi, M., Greenspan, H., Madabhushi, A. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Huang, H., et al.: Unet 3+: A full-scale connected unet for medical image segmentation. In: Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059. IEEE (2020)
Gu, Z., Cheng, J., Fu, H., et al.: Ce-net: Context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)
Deng, W., et al.: MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve. In: Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, pp. 393–396. IEEE (2010)
Kaleem, M., Sanaullah, M., Hussain, M.A., Jaffar, M.A., Choi, T.-S.: Segmentation of brain tumor tissue using marker controlled watershed transform method. In: Chowdhry, B.S., Shaikh, F.K., Hussain, D.M.A., Uqaili, M.A. (eds.) IMTIC 2012. CCIS, vol. 281, pp. 222–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28962-0_22
Menon, N., et al.: Brain tumor segmentation in MRI images using unsupervised artificial bee colony algorithm and FCM clustering. In: Proceedings of the 2015 International Conference on Communications and Signal Processing (ICCSP), pp. 0006–0009. IEEE (2015)
Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
He, K.M., et al.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969. IEEE (2017)
Chen, L.C., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587
Wu, X.D.: An iterative convolutional neural network algorithm improves electron microscopy image segmentation. arXiv preprint arXiv:1506.05849
Long, J., et al.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE (2015)
Chen, Y., Wang, K., Liao, X., et al.: Channel-Unet: A spatial channel-wise convolutional neural network for liver and tumors segmentation. Front. Genet. 10, 1110 (2019)
Chen, L., Bentley, P., Mori, K., et al.: DRINet for medical image segmentation. IEEE Trans. Med. Imaging 37(11), 2453–2462 (2018)
Huang, G., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708. IEEE (2017)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9. IEEE (2015)
He, K.M., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016)
Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826. IEEE (2016)
Lo, S.Y., et al.: Efficient dense modules of asymmetric convolution for real-time semantic segmentation. In: Proceedings of the ACM Multimedia Asia, pp. 1–6
Han, K., et al.: Ghostnet: More features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589. IEEE (2019)
Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)
Kaku, A., Hegde, C.V., Huang, J., et al.: DARTS: DenseUnet-based automatic rapid tool for brain segmentation. arXiv preprint arXiv:1911.05567
Acknowledgements
The work was supported by the High-level Talents Fund of Hubei University of Technology under grant No. GCRC2020016, Open Funding Project of the State Key Laboratory of Biocatalysis and Enzyme Engineering No. SKLBEE2020020 and SKLBEE2021020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, Y., Gan, H., Yang, Z. (2022). TBC-Unet: U-net with Three-Branch Convolution for Gliomas MRI Segmentation. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-13829-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13828-7
Online ISBN: 978-3-031-13829-4
eBook Packages: Computer ScienceComputer Science (R0)