Abstract
When massive labeled data are unavailable, domain adaptation can transfer knowledge from a different source domain. Many recent domain adaptation methods merely focus on extracting domain-invariant features via minimizing the global distribution divergence between domains while ignoring local distribution alignment. In order to solve the problem of incomplete distribution alignment, we propose a K-nearest neighbors based local distribution alignment method, where Maximum Mean Discrepancy (MMD) is adopted as the transfer loss function to reduce the global distribution discrepancy, and then a K-nearest neighbors based transfer loss function is also devised to minimize the local distribution difference for the complete alignment of source and target domain. The proposed method contributes to avoid the dilemma of incomplete alignment in MMD by local distribution alignment and improve its recognition accuracy. Experiments on multiple transfer learning datasets show that the proposed method performs comparatively well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16
Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)
Donahue, J., Jia, Y.,Vinyals, O., Hoffman, J.: Decaf: A deep convolutional activation feature for generic visual recognition. In: 31st International Conference on Machine Learning on Proceedings, pp. 647–655. JMLR, New York (2014)
Razavian A., Azizpour H., Sullivan J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 512–519. IEEE, Piscataway (2014)
Ghifary, M., Kleijn, W.B., Zhang, M.: Domain adaptive neural networks for object recognition. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp. 898–904. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-1_76
Tzeng E., Hoffman, J., Zhang N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv:1412.3474, Accessed 17 March 2020
Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Annual Conference on Neural Information Processing System, pp. 1097–1105. MIT, Cambridge (2012)
Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: AAAI conference on Artificial Intelligence, pp. 2058–2065. AAAI, Palo Alto (2016)
He, K., Zhang, X., Ren, S., Su, J.: Deep residual learning for image recognition. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp.770–778. IEEE, Piscataway (2016)
Goodfellow, I.J., et al.: Generative adversarial nets. In: Proc. of the 27th International Conference on Neural Information Processing Systems, pp. 2672–2680. MIT, Cambridge (2014)
Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Annual Conference on Neural Information Processing System, pp. 343–351. MIT, Cambridge (2016)
Tzeng E., Hoffman J., Saenko K., Darrell, T.: Adversarial discriminative domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2962–2971. IEEE, Piscataway (2017)
Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. arXiv:1707.01217v2. Accessed 21 Nov 2017
Liu, M., Tuzel, O.: Coupled generative adversarial networks. In: Annual Conference on Neural Information Processing System, pp. 469–477. MIT, Cambridge (2016)
Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. JMLR, New York (2015)
Gretton, A., et al.: Optimal kernel choice for largescale two-sample tests. In: Annual Conference on Neural Information Processing System, pp. 1205–1213. MIT, Cambridge (2012)
Ganin, Y., et al.: Domain-adversarial training of neural networks. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 189–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_10
Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., Saminger-Platz, S.: Central moment discrepancy (CMD) for domain-invariant representation learning. arXiv:1702.08811v3. Accessed 2 May 2019
Long M., Wang J., Jordan M.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217. JMLR, New York (2017)
Wang, W., et al.: A Unified Joint Maximum Mean Discrepancy for Domain Adaptation. arXiv: 2101.09979, Accessed 25 Jan 2021
Zhang, L., Wang, S., Huang, G.B., Zuo, W., Yang, J., Zhang, D.: Manifold Criterion Guided Transfer Learning via Intermediate Domain Generation. arXiv:1903.10211v1. Accessed 25 Mar 2019
Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1859–1867. IEEE, Piscataway (2017)
Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410–1417. IEEE, Piscataway (2014)
Liang, J., He, R., Sun, Z., Tan, T.: Aggregating randomized clustering-promoting invariant projections for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1027–1042 (2019)
Sanodiya, R., Yao, L.: Linear discriminant analysis via pseudo labels: a unified framework for visual domain adaptation. IEEE Access 8, 200073–200090 (2020)
Wang, J., Chen, Y., Yu, H., Wenije, F.: Visual domain adaptation with manifold embedded distribution alignment. In: Proceedings of the 26th ACM international conference on Multimedia, pp. 402–410. ACM, New York (2018)
Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: 2013 IEEE International Conference on Computer Vision, pp. 2200–2207. IEEE, Piscataway (2013)
Yan H., Ding Y., Li P., Wang, Q., Xu, Y., Zuo, W.: Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 945–954. IEEE, Piscataway (2017)
Ren, C., Ge, P., Yang, P., Yan, S.: Learning target-domain-specific classifier for partial domain adaptation. IEEE Trans. Neural Netw. Learning Syst. 32(5), 1989–2001 (2021)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Hull, J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)
Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16
Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001. Accessed 19 April 2007
Nene, S.A., Nayar S.K., Murase, H.: Columbia object image library (coil-100) (1996)
Ghifary, M., Bastiaan Kleijn, W., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36
Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 2988–2997. ACM, New York (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tian, Y., Li, B. (2022). K-Nearest Neighbor Based Local Distribution Alignment. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-13829-4_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13828-7
Online ISBN: 978-3-031-13829-4
eBook Packages: Computer ScienceComputer Science (R0)