Nothing Special   »   [go: up one dir, main page]

Skip to main content

K-Nearest Neighbor Based Local Distribution Alignment

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1756 Accesses

Abstract

When massive labeled data are unavailable, domain adaptation can transfer knowledge from a different source domain. Many recent domain adaptation methods merely focus on extracting domain-invariant features via minimizing the global distribution divergence between domains while ignoring local distribution alignment. In order to solve the problem of incomplete distribution alignment, we propose a K-nearest neighbors based local distribution alignment method, where Maximum Mean Discrepancy (MMD) is adopted as the transfer loss function to reduce the global distribution discrepancy, and then a K-nearest neighbors based transfer loss function is also devised to minimize the local distribution difference for the complete alignment of source and target domain. The proposed method contributes to avoid the dilemma of incomplete alignment in MMD by local distribution alignment and improve its recognition accuracy. Experiments on multiple transfer learning datasets show that the proposed method performs comparatively well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  2. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  3. Donahue, J., Jia, Y.,Vinyals, O., Hoffman, J.: Decaf: A deep convolutional activation feature for generic visual recognition. In: 31st International Conference on Machine Learning on Proceedings, pp. 647–655. JMLR, New York (2014)

    Google Scholar 

  4. Razavian A., Azizpour H., Sullivan J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 512–519. IEEE, Piscataway (2014)

    Google Scholar 

  5. Ghifary, M., Kleijn, W.B., Zhang, M.: Domain adaptive neural networks for object recognition. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp. 898–904. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-1_76

    Chapter  Google Scholar 

  6. Tzeng E., Hoffman, J., Zhang N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv:1412.3474, Accessed 17 March 2020

  7. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Annual Conference on Neural Information Processing System, pp. 1097–1105. MIT, Cambridge (2012)

    Google Scholar 

  8. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: AAAI conference on Artificial Intelligence, pp. 2058–2065. AAAI, Palo Alto (2016)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Su, J.: Deep residual learning for image recognition. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp.770–778. IEEE, Piscataway (2016)

    Google Scholar 

  10. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proc. of the 27th International Conference on Neural Information Processing Systems, pp. 2672–2680. MIT, Cambridge (2014)

    Google Scholar 

  11. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Annual Conference on Neural Information Processing System, pp. 343–351. MIT, Cambridge (2016)

    Google Scholar 

  12. Tzeng E., Hoffman J., Saenko K., Darrell, T.: Adversarial discriminative domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2962–2971. IEEE, Piscataway (2017)

    Google Scholar 

  13. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. arXiv:1707.01217v2. Accessed 21 Nov 2017

  14. Liu, M., Tuzel, O.: Coupled generative adversarial networks. In: Annual Conference on Neural Information Processing System, pp. 469–477. MIT, Cambridge (2016)

    Google Scholar 

  15. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. JMLR, New York (2015)

    Google Scholar 

  16. Gretton, A., et al.: Optimal kernel choice for largescale two-sample tests. In: Annual Conference on Neural Information Processing System, pp. 1205–1213. MIT, Cambridge (2012)

    Google Scholar 

  17. Ganin, Y., et al.: Domain-adversarial training of neural networks. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 189–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_10

    Chapter  Google Scholar 

  18. Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., Saminger-Platz, S.: Central moment discrepancy (CMD) for domain-invariant representation learning. arXiv:1702.08811v3. Accessed 2 May 2019

  19. Long M., Wang J., Jordan M.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217. JMLR, New York (2017)

    Google Scholar 

  20. Wang, W., et al.: A Unified Joint Maximum Mean Discrepancy for Domain Adaptation. arXiv: 2101.09979, Accessed 25 Jan 2021

    Google Scholar 

  21. Zhang, L., Wang, S., Huang, G.B., Zuo, W., Yang, J., Zhang, D.: Manifold Criterion Guided Transfer Learning via Intermediate Domain Generation. arXiv:1903.10211v1. Accessed 25 Mar 2019

  22. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1859–1867. IEEE, Piscataway (2017)

    Google Scholar 

  23. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410–1417. IEEE, Piscataway (2014)

    Google Scholar 

  24. Liang, J., He, R., Sun, Z., Tan, T.: Aggregating randomized clustering-promoting invariant projections for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1027–1042 (2019)

    Article  Google Scholar 

  25. Sanodiya, R., Yao, L.: Linear discriminant analysis via pseudo labels: a unified framework for visual domain adaptation. IEEE Access 8, 200073–200090 (2020)

    Article  Google Scholar 

  26. Wang, J., Chen, Y., Yu, H., Wenije, F.: Visual domain adaptation with manifold embedded distribution alignment. In: Proceedings of the 26th ACM international conference on Multimedia, pp. 402–410. ACM, New York (2018)

    Google Scholar 

  27. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: 2013 IEEE International Conference on Computer Vision, pp. 2200–2207. IEEE, Piscataway (2013)

    Google Scholar 

  28. Yan H., Ding Y., Li P., Wang, Q., Xu, Y., Zuo, W.: Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 945–954. IEEE, Piscataway (2017)

    Google Scholar 

  29. Ren, C., Ge, P., Yang, P., Yan, S.: Learning target-domain-specific classifier for partial domain adaptation. IEEE Trans. Neural Netw. Learning Syst. 32(5), 1989–2001 (2021)

    Article  MathSciNet  Google Scholar 

  30. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  31. Hull, J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

  32. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  33. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001. Accessed 19 April 2007

  34. Nene, S.A., Nayar S.K., Murase, H.: Columbia object image library (coil-100) (1996)

    Google Scholar 

  35. Ghifary, M., Bastiaan Kleijn, W., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36

    Chapter  Google Scholar 

  36. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 2988–2997. ACM, New York (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y., Li, B. (2022). K-Nearest Neighbor Based Local Distribution Alignment. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics