Abstract
Tannins are potential curatives, besides being an effective antioxidants. Here, tannin based QSAR with machine learning pipeline is elucidated. IC50 values of tannins’ antioxidant activity were adapted from literature. This was further split into training and testing datasets. Furthermore, quantum semi-empirical descriptors were computed. Out of 277 chemical descriptors, 17 were shortlisted by feature selection Multiple Linear Regression. For the test dataset; R2 = 0.706 and mean absolute error (MAE) = 1.94. For the same dataset using nonlinear artificial neural network (ANN), R2 = 0.858 and MAE = 1.02. Therefore, AMPAC-CODESSA’s feature selection and ANN, provides an efficacious tannin-QSAR model aiding tannin-based therapeutic design in future.
C. Gopalakrishnan, C. Xu and Y. Li—Contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vuolo, M.M., Lima, V.S., Maróstica, M.R.: Junior, phenolic compounds. In: Bioactive Compounds, pp. 33–50, Elsevier (2019). https://doi.org/10.1016/B978-0-12-814774-0.00002-5
Yoshikawa, T., Naito, Y., Kondo, M.: Free radicals and diseases. In: M. Hiramatsu, T.Y., Inoue, M. (eds.) Food and Free Radicals,. Boston, MA: Springer US, pp. 11–19 (1997). https://doi.org/10.1007/978-1-4899-1837-6_2
Florence, T.M.: The role of free radicals in disease. Aust. New Z. J. Ophthalmol. 23(1), 3–7 (1995). https://doi.org/10.1111/j.1442-9071.1995.tb01638.x
Fraga-Corral, M., et al.: Traditional applications of tannin rich extracts supported by scientific data: chemical composition, bioavailability and bioaccessibility. Foods 10(2), 251 (2021). https://doi.org/10.3390/foods10020251
Ajebli, M., Eddouks, M.: The promising role of plant tannins as bioactive antidiabetic agents. Curr. Med. Chem. 26(25), 4852–4884 (2019). https://doi.org/10.2174/0929867325666180605124256
Ramakrishnan, K., Krishnan, M.R.: Tannin - classification, analysis and applications. Anc. Sci. Life 13(3–4), 232–238 (1994)
Auger, C., et al.: Red wine phenolic compounds reduce plasma lipids and apolipoprotein B and prevent early aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters (Mesocricetus auratus). J. Nutr. 132(6), 1207–1213 (2002). https://doi.org/10.1093/jn/132.6.1207
Sharma, K., et al.: Health effects, sources, utilization and safety of tannins: a critical review. Toxin Rev. 1–13 (2019). https://doi.org/10.1080/15569543.2019.1662813
Hussain, G., et al.: Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: an updated review. Molecules 24(12), E2213 (2019). https://doi.org/10.3390/molecules24122213
Chung, K.-T., Wong, T.Y., Wei, C.-I., Huang, Y.-W., Lin, Y.: Tannins and human health: a review. Crit. Rev. Food Sci. Nutr. 38(6), 421–464 (1998). https://doi.org/10.1080/10408699891274273
Ashenden, S.K., Deswal, S., Bulusu, K.C., Bartosik, A., Shameer, K.: Data types and resources. In: The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry, pp. 27–60, Elsevier (2021). https://doi.org/10.1016/B978-0-12-820045-2.000040
Kwon, S., Bae, H., Jo, J., Yoon, S.: Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinform. 20(1), 521 (2019). https://doi.org/10.1186/s12859-019-3135-4
Khairullina, V., Safarova, I., Sharipova, G., Martynova, Y., Gerchikov, A.: QSAR assessing the efficiency of antioxidants in the termination of radical-chain oxidation processes of organic compounds. Molecules 26(2), E421 (2021). https://doi.org/10.3390/molecules26020421
Shi, Y.: Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds. Sci. Rep. 11(1), 8806 (2021). https://doi.org/10.1038/s41598-021-88341-1
Yokozawa, T., Chen, C.P., Dong, E., Tanaka, T., Nonaka, G.I., Nishioka, I.: Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2 picrylhydrazyl radical. Biochem. Pharmacol. 56(2), 213–222 (1998). https://doi.org/10.1016/s0006-2952(98)00128-2
Kim, S., et al.: PubChem substance and compound databases. Nucleic Acids Res. 44(D1), D1202-1213 ( 2016). https://doi.org/10.1093/nar/gkv951
Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P.: Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107(13), 3902–3909 (1985). https://doi.org/10.1021/ja00299a024
Ruark, C.D., Hack, C.E., Robinson, P.J., Anderson, P.E., Gearhart, J.M.: Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase. Arch. Toxicol. 87(2), 281–289 (2013). https://doi.org/10.1007/s00204-012-0934-z
Seedher, N., Bhatia, S., Singh, B.: Quantitative correlation between theoretical molecular descriptors and drug-HSA binding affinities for various cox-2 inhibitors. Chem. Biol. Drug Des. 72(4), 297–302 (2008). https://doi.org/10.1111/j.1747-0285.2008.00711.x
Tadist, K., Najah, S., Nikolov, N.S., Mrabti, F., Zahi, A.: Feature selection methods and genomic big data: a systematic review. J. Big Data 6(1), 1–24 (2019). https://doi.org/10.1186/s40537-019-0241-0
Kotu, V., Deshpande, B.: Time series forecasting. In: Data Science, Elsevier, pp. 395–445 (2019). https://doi.org/10.1016/B978-0-12-814761-0.00012-5
Žuvela, P., David, J., Wong, M.W.: Interpretation of ANN-based QSAR models for prediction of antioxidant activity of flavonoids. J. Comput. Chem. 39(16), 953–963 (2018). https://doi.org/10.1002/jcc.25168
Fathi, E., Maleki Shoja, B.: Deep neural networks for natural language processing. In: Handbook of Statistics, vol. 38, pp. 229–316 Elsevier (2018). https://doi.org/10.1016/bs.host.2018.07.006
Seed, G.M.: An Introduction to Object-Oriented Programming in C++: with Applications in Computer Graphics, 2nd edn. Springer, London (2001)
Amic, D., Davidovic-Amic, D., Beslo, D., Rastija, V., Lucic, B., Trinajstic, N.: SAR and QSAR of the antioxidant activity of flavonoids. CMC 14(7), 827–845 (2007). https://doi.org/10.2174/092986707780090954
Liu, Z., et al.: Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 9, 477 (2018). https://doi.org/10.3389/fphys.2018.00477
Liou, G.-Y., Storz, P.: Reactive oxygen species in cancer. Free Radic. Res. 44(5), 479–496 (2010). https://doi.org/10.3109/10715761003667554
Singh, A., Kukreti, R., Saso, L., Kukreti, S.: Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24(8), E1583 (2019). https://doi.org/10.3390/molecules24081583
Pandey, K.B., Rizvi, S.I.: Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev 2(5), 270–278 (2009). https://doi.org/10.4161/oxim.2.5.9498
Chung, K.-T., Wei, C.-I., Johnson, M.G.: Are tannins a double-edged sword in biology and health? Trends Food Sci. Technol. 9(4), 168–175 (1998). https://doi.org/10.1016/S0924-2244(98)00028-4
Amarowicz, R.: Tannins: the new natural antioxidants? Eur. J. Lipid Sci. Technol. 109(6), 549–551 ( 2007). https://doi.org/10.1002/ejlt.200700145
Hansch, C., Kurup, A., Garg, R., Gao, H.: Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem. Rev. 101(3), 619–672 (2001). https://doi.org/10.1021/cr0000067
Neves, B.J., Braga, R.C., Melo-Filho, C.C., Moreira-Filho, J.T., Muratov, E.N., Andrade, C.H.: QSAR-based virtual screening: advances and applications in drug discovery. Front. Pharmacol. 9, 1275 (2018). https://doi.org/10.3389/fphar.2018.01275
Zikmund, W.G.: Business Research Methods, (ed.) 8. Mason, Ohio: Thomson/South-Western (2009)
Moore, D.S., Notz, W., Fligner, M.A.: The Basic Practice of Statistics. W.H. Freeman and Co., New York (2013)
Žuvela, P., David, J., Yang, X., Huang, D., Wong, M.W.: Non-Linear quantitative structure−activity relationships modelling, mechanistic study and in-silico design of flavonoids as potent antioxidants. Int. J. Mol. Sci. 20(9), E2328 (2019). https://doi.org/10.3390/ijms20092328
Roy, K., Mandal, A.S.: Development of linear and nonlinear predictive QSAR models and their external validation using molecular similarity principle for anti-HIV indolyl aryl sulfones. J. Enzyme Inhib. Med. Chem. 23(6), 980–995 (2008). https://doi.org/10.1080/14756360701811379
Bourquin, J., Schmidli, H., van Hoogevest, P., Leuenberger, H.: Advantages of artificial neural networks (ANNs) as alternative modelling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form. Eur. J. Pharm. Sci. 7(1), 5–16 (1998). https://doi.org/10.1016/S0928-0987(97)10028-8
Maksimenko, V.A., et al.: Artificial neural network classification of motor-related EEG: an increase in classification accuracy by reducing signal complexity. Complexity 2018, 1–10 (2018). https://doi.org/10.1155/2018/9385947
Acknowledgement
This study was supported by Provincial Science and Technology Grant of Shanxi Province (20210302124588),Science and technology innovation project of Shanxi province universities (2019L0683). Also, we thank the VIT university and ICMR (File no:5/4–5/Neuro/226/2020/NCD-I) for providing the facilities to carry out this work.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gopalakrishnan, C. et al. (2022). Elucidating Quantum Semi-empirical Based QSAR, for Predicting Tannins’ Anti-oxidant Activity with the Help of Artificial Neural Network. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-13829-4_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13828-7
Online ISBN: 978-3-031-13829-4
eBook Packages: Computer ScienceComputer Science (R0)