Nothing Special   »   [go: up one dir, main page]

Skip to main content

Elucidating Quantum Semi-empirical Based QSAR, for Predicting Tannins’ Anti-oxidant Activity with the Help of Artificial Neural Network

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Abstract

Tannins are potential curatives, besides being an effective antioxidants. Here, tannin based QSAR with machine learning pipeline is elucidated. IC50 values of tannins’ antioxidant activity were adapted from literature. This was further split into training and testing datasets. Furthermore, quantum semi-empirical descriptors were computed. Out of 277 chemical descriptors, 17 were shortlisted by feature selection Multiple Linear Regression. For the test dataset; R2 = 0.706 and mean absolute error (MAE) = 1.94. For the same dataset using nonlinear artificial neural network (ANN), R2 = 0.858 and MAE = 1.02. Therefore, AMPAC-CODESSA’s feature selection and ANN, provides an efficacious tannin-QSAR model aiding tannin-based therapeutic design in future.

C. Gopalakrishnan, C. Xu and Y. Li—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vuolo, M.M., Lima, V.S., Maróstica, M.R.: Junior, phenolic compounds. In: Bioactive Compounds, pp. 33–50, Elsevier (2019). https://doi.org/10.1016/B978-0-12-814774-0.00002-5

  2. Yoshikawa, T., Naito, Y., Kondo, M.: Free radicals and diseases. In: M. Hiramatsu, T.Y., Inoue, M. (eds.) Food and Free Radicals,. Boston, MA: Springer US, pp. 11–19 (1997). https://doi.org/10.1007/978-1-4899-1837-6_2

  3. Florence, T.M.: The role of free radicals in disease. Aust. New Z. J. Ophthalmol. 23(1), 3–7 (1995). https://doi.org/10.1111/j.1442-9071.1995.tb01638.x

    Article  Google Scholar 

  4. Fraga-Corral, M., et al.: Traditional applications of tannin rich extracts supported by scientific data: chemical composition, bioavailability and bioaccessibility. Foods 10(2), 251 (2021). https://doi.org/10.3390/foods10020251

    Article  Google Scholar 

  5. Ajebli, M., Eddouks, M.: The promising role of plant tannins as bioactive antidiabetic agents. Curr. Med. Chem. 26(25), 4852–4884 (2019). https://doi.org/10.2174/0929867325666180605124256

    Article  Google Scholar 

  6. Ramakrishnan, K., Krishnan, M.R.: Tannin - classification, analysis and applications. Anc. Sci. Life 13(3–4), 232–238 (1994)

    Google Scholar 

  7. Auger, C., et al.: Red wine phenolic compounds reduce plasma lipids and apolipoprotein B and prevent early aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters (Mesocricetus auratus). J. Nutr. 132(6), 1207–1213 (2002). https://doi.org/10.1093/jn/132.6.1207

    Article  Google Scholar 

  8. Sharma, K., et al.: Health effects, sources, utilization and safety of tannins: a critical review. Toxin Rev. 1–13 (2019). https://doi.org/10.1080/15569543.2019.1662813

  9. Hussain, G., et al.: Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: an updated review. Molecules 24(12), E2213 (2019). https://doi.org/10.3390/molecules24122213

    Article  Google Scholar 

  10. Chung, K.-T., Wong, T.Y., Wei, C.-I., Huang, Y.-W., Lin, Y.: Tannins and human health: a review. Crit. Rev. Food Sci. Nutr. 38(6), 421–464 (1998). https://doi.org/10.1080/10408699891274273

    Article  Google Scholar 

  11. Ashenden, S.K., Deswal, S., Bulusu, K.C., Bartosik, A., Shameer, K.: Data types and resources. In: The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry, pp. 27–60, Elsevier (2021). https://doi.org/10.1016/B978-0-12-820045-2.000040

  12. Kwon, S., Bae, H., Jo, J., Yoon, S.: Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinform. 20(1), 521 (2019). https://doi.org/10.1186/s12859-019-3135-4

    Article  Google Scholar 

  13. Khairullina, V., Safarova, I., Sharipova, G., Martynova, Y., Gerchikov, A.: QSAR assessing the efficiency of antioxidants in the termination of radical-chain oxidation processes of organic compounds. Molecules 26(2), E421 (2021). https://doi.org/10.3390/molecules26020421

    Article  Google Scholar 

  14. Shi, Y.: Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds. Sci. Rep. 11(1), 8806 (2021). https://doi.org/10.1038/s41598-021-88341-1

    Article  Google Scholar 

  15. Yokozawa, T., Chen, C.P., Dong, E., Tanaka, T., Nonaka, G.I., Nishioka, I.: Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2 picrylhydrazyl radical. Biochem. Pharmacol. 56(2), 213–222 (1998). https://doi.org/10.1016/s0006-2952(98)00128-2

    Article  Google Scholar 

  16. Kim, S., et al.: PubChem substance and compound databases. Nucleic Acids Res. 44(D1), D1202-1213 ( 2016). https://doi.org/10.1093/nar/gkv951

    Article  Google Scholar 

  17. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P.: Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107(13), 3902–3909 (1985). https://doi.org/10.1021/ja00299a024

    Article  Google Scholar 

  18. Ruark, C.D., Hack, C.E., Robinson, P.J., Anderson, P.E., Gearhart, J.M.: Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase. Arch. Toxicol. 87(2), 281–289 (2013). https://doi.org/10.1007/s00204-012-0934-z

    Article  Google Scholar 

  19. Seedher, N., Bhatia, S., Singh, B.: Quantitative correlation between theoretical molecular descriptors and drug-HSA binding affinities for various cox-2 inhibitors. Chem. Biol. Drug Des. 72(4), 297–302 (2008). https://doi.org/10.1111/j.1747-0285.2008.00711.x

    Article  Google Scholar 

  20. Tadist, K., Najah, S., Nikolov, N.S., Mrabti, F., Zahi, A.: Feature selection methods and genomic big data: a systematic review. J. Big Data 6(1), 1–24 (2019). https://doi.org/10.1186/s40537-019-0241-0

    Article  Google Scholar 

  21. Kotu, V., Deshpande, B.: Time series forecasting. In: Data Science, Elsevier, pp. 395–445 (2019). https://doi.org/10.1016/B978-0-12-814761-0.00012-5

  22. Žuvela, P., David, J., Wong, M.W.: Interpretation of ANN-based QSAR models for prediction of antioxidant activity of flavonoids. J. Comput. Chem. 39(16), 953–963 (2018). https://doi.org/10.1002/jcc.25168

    Article  Google Scholar 

  23. Fathi, E., Maleki Shoja, B.: Deep neural networks for natural language processing. In: Handbook of Statistics, vol. 38, pp. 229–316 Elsevier (2018). https://doi.org/10.1016/bs.host.2018.07.006

  24. Seed, G.M.: An Introduction to Object-Oriented Programming in C++: with Applications in Computer Graphics, 2nd edn. Springer, London (2001)

    Book  MATH  Google Scholar 

  25. Amic, D., Davidovic-Amic, D., Beslo, D., Rastija, V., Lucic, B., Trinajstic, N.: SAR and QSAR of the antioxidant activity of flavonoids. CMC 14(7), 827–845 (2007). https://doi.org/10.2174/092986707780090954

    Article  Google Scholar 

  26. Liu, Z., et al.: Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 9, 477 (2018). https://doi.org/10.3389/fphys.2018.00477

    Article  Google Scholar 

  27. Liou, G.-Y., Storz, P.: Reactive oxygen species in cancer. Free Radic. Res. 44(5), 479–496 (2010). https://doi.org/10.3109/10715761003667554

    Article  Google Scholar 

  28. Singh, A., Kukreti, R., Saso, L., Kukreti, S.: Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24(8), E1583 (2019). https://doi.org/10.3390/molecules24081583

    Article  Google Scholar 

  29. Pandey, K.B., Rizvi, S.I.: Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev 2(5), 270–278 (2009). https://doi.org/10.4161/oxim.2.5.9498

    Article  Google Scholar 

  30. Chung, K.-T., Wei, C.-I., Johnson, M.G.: Are tannins a double-edged sword in biology and health? Trends Food Sci. Technol. 9(4), 168–175 (1998). https://doi.org/10.1016/S0924-2244(98)00028-4

    Article  Google Scholar 

  31. Amarowicz, R.: Tannins: the new natural antioxidants? Eur. J. Lipid Sci. Technol. 109(6), 549–551 ( 2007). https://doi.org/10.1002/ejlt.200700145

    Article  Google Scholar 

  32. Hansch, C., Kurup, A., Garg, R., Gao, H.: Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem. Rev. 101(3), 619–672 (2001). https://doi.org/10.1021/cr0000067

    Article  Google Scholar 

  33. Neves, B.J., Braga, R.C., Melo-Filho, C.C., Moreira-Filho, J.T., Muratov, E.N., Andrade, C.H.: QSAR-based virtual screening: advances and applications in drug discovery. Front. Pharmacol. 9, 1275 (2018). https://doi.org/10.3389/fphar.2018.01275

    Article  Google Scholar 

  34. Zikmund, W.G.: Business Research Methods, (ed.) 8. Mason, Ohio: Thomson/South-Western (2009)

    Google Scholar 

  35. Moore, D.S., Notz, W., Fligner, M.A.: The Basic Practice of Statistics. W.H. Freeman and Co., New York (2013)

    Google Scholar 

  36. Žuvela, P., David, J., Yang, X., Huang, D., Wong, M.W.: Non-Linear quantitative structure−activity relationships modelling, mechanistic study and in-silico design of flavonoids as potent antioxidants. Int. J. Mol. Sci. 20(9), E2328 (2019). https://doi.org/10.3390/ijms20092328

    Article  Google Scholar 

  37. Roy, K., Mandal, A.S.: Development of linear and nonlinear predictive QSAR models and their external validation using molecular similarity principle for anti-HIV indolyl aryl sulfones. J. Enzyme Inhib. Med. Chem. 23(6), 980–995 (2008). https://doi.org/10.1080/14756360701811379

    Article  Google Scholar 

  38. Bourquin, J., Schmidli, H., van Hoogevest, P., Leuenberger, H.: Advantages of artificial neural networks (ANNs) as alternative modelling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form. Eur. J. Pharm. Sci. 7(1), 5–16 (1998). https://doi.org/10.1016/S0928-0987(97)10028-8

    Article  Google Scholar 

  39. Maksimenko, V.A., et al.: Artificial neural network classification of motor-related EEG: an increase in classification accuracy by reducing signal complexity. Complexity 2018, 1–10 (2018). https://doi.org/10.1155/2018/9385947

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by Provincial Science and Technology Grant of Shanxi Province (20210302124588),Science and technology innovation project of Shanxi province universities (2019L0683). Also, we thank the VIT university and ICMR (File no:5/4–5/Neuro/226/2020/NCD-I) for providing the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajasekaran Ramalingam or Pengyong Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gopalakrishnan, C. et al. (2022). Elucidating Quantum Semi-empirical Based QSAR, for Predicting Tannins’ Anti-oxidant Activity with the Help of Artificial Neural Network. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics