Nothing Special   »   [go: up one dir, main page]

Skip to main content

GCNMFCDA: A Method Based on Graph Convolutional Network and Matrix Factorization for Predicting circRNA-Disease Associations

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1787 Accesses

Abstract

Numerous studies reveal that Circular RNAs (circRNAs) are critical for human physiological and pathological processes. Research on the disease-related circRNAs can provide insight into the mechanisms of extraordinary disease and benefit the prevention and therapy of numerous untreated human diseases. As biological experiments require a great deal of labor and time, the calculation-based methods have become more and more salient in the field. Here we present a brand-new model named GCNMFCDA, which contains Graph Convolutional Network (GCN) and Matrix Factorization (MF) to predict disease-related circRNAs. Theoretically, we first utilize circRNA and disease similarities to construct initial node features. Then we apply GCN to learn potential embeddings of circRNA and disease based on initial node features. Finally, the inner product between circRNA embedding and disease embedding is introduced to construct the new score matrix based on matrix factorization. We adopt fivefold and tenfold cross validation to evaluate our model. GCNMFCDA obtains an average AUC of 0.9330 and 0.9290, respectively, and performs better than the other eleven existing methods. Furthermore, case studies on breast cancer and glioma illustrate that 19 and 18 of the top 20 candidate circRNAs were respectively confirmed in the validation datasets or published literature. These experimental results reveal that GCNMFCDA can discover circRNA-disease associations effectively and reliably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Memczak, S., et al.: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441), 333–338 (2013)

    Article  Google Scholar 

  2. Jeck, W.R., Sharpless, N.E.: Detecting and characterizing circular RNAs. Nat. Biotechnol. 32(5), 453–461 (2014)

    Article  Google Scholar 

  3. Hansen, T.B., et al.: Natural RNA circles function as efficient microRNA sponges. Nature 495(7441), 384–388 (2013)

    Article  Google Scholar 

  4. Chao, C.W., Chan, D.C., Kuo, A., Leder, P.: The mouse formin (Fmn) gene: abundant circular RNA transcripts and gene-targeted deletion analysis. Mol. Med. 4(9), 614–628 (1998)

    Article  Google Scholar 

  5. Abdelmohsen, K., et al.: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14(3), 361–369 (2017)

    Article  Google Scholar 

  6. Ashwal Fluss, R., et al.: circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56(1), 55–66 (2014)

    Article  Google Scholar 

  7. Dudekula, D.B., Panda, A.C., Grammatikakis, I., De, S., Abdelmohsen, K., Gorospe, M.: CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 13(1), 34–42 (2016)

    Article  Google Scholar 

  8. Liu, J., Zhao, K., Huang, N., Zhang, N.: Circular RNAs and human glioma. Cancer Biol. Med. 16(1), 11 (2019)

    Article  Google Scholar 

  9. Chen, Y., Wang, Y., Ding, Y., Su, X., Wang, C.: RGCNCDA: Relational graph convolutional network improves circRNA-disease association prediction by incorporating microRNAs. Comput. Biol. Med. 143, 105322 (2022)

    Article  Google Scholar 

  10. Deepthi, K., Jereesh, A.S.: Inferring potential CircRNA–disease associations via deep autoencoder-based classification. Mol. Diagn. Ther. 25(1), 87–97 (2021)

    Article  Google Scholar 

  11. Wang, L., Yan, X., You, Z.H., Zhou, X., Li, H.-Y., Huang, Y.-A.: SGANRDA: semi-supervised generative adversarial networks for predicting circRNA–disease associations. Brief Bioinform. 22(5), bbab028 (2021)

    Article  Google Scholar 

  12. Fan, C., Lei, X., Fang, Z., Jiang, Q., Wu, F.X.: CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases. Database 2018, bay044 (2018)

    Article  Google Scholar 

  13. Yu, G., Wang, L.G., Yan, G.R., He, Q.Y.: DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31(4), 608–609 (2015)

    Article  Google Scholar 

  14. Wang, D., Wang, J., Lu, M., Song, F., Cui, Q.: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13), 1644–1650 (2010)

    Article  Google Scholar 

  15. van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27(21), 3036–3043 (2011)

    Article  Google Scholar 

  16. Kipf, T.N., Welling. M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  17. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  18. Ramlatchan, A., Yang, M., Liu, Q., Li, M., Wang, J., Li, Y.: A survey of matrix completion methods for recommendation systems. Big Data Min. Analytics 1(4), 308–323 (2018)

    Article  Google Scholar 

  19. Lei, X., Fang, Z., Guo, L.: Predicting circRNA-disease associations based on improved collaboration filtering recommendation system with multiple data. Front Genet. 10, 897 (2019)

    Article  Google Scholar 

  20. Le, N.Q.K., Do, D.T., Hung, T.N.K., Lam, L.H.T., Huynh, T.T., Nguyen, N.T.K.: A computational framework based on ensemble deep neural networks for essential genes identification. Int. J. Mol. Sci. 21(23), 9070 (2020)

    Article  Google Scholar 

  21. Ho Thanh Lam, L., et al.: Machine learning model for identifying antioxidant proteins using features calculated from primary sequences. Biology 9(10), 325 (2020)

    Article  Google Scholar 

  22. Yan, C., Wang, J., Wu, F.X.: DWNN-RLS: regularized least squares method for predicting circRNA-disease associations. BMC Bioinform. 19(19), 73–81 (2018)

    Google Scholar 

  23. Lei, X., Fang, Z., Chen, L., Wu, F.X.: PWCDA: path weighted method for predicting circRNA-disease associations. Int. J. Mol. Sci. 19(11), 3410 (2018)

    Article  Google Scholar 

  24. Fan, C., Lei, X., Wu, F.X.: Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks. Int. J. Biol. Sci. 14(14), 1950 (2018)

    Article  Google Scholar 

  25. Wang, L., You, Z.H., Li, Y.M., Zheng, K., Huang, Y.A.: GCNCDA: a new method for predicting circRNA-disease associations based on graph convolutional network algorithm. PLoS Comput. Biol. 16(5), e1007568 (2020)

    Article  Google Scholar 

  26. Zheng, K., You, Z.H., Li, J.Q., Wang, L., Guo, Z.H., Huang, Y.A.: iCDA-CGR: Identification of circRNA-disease associations based on Chaos Game Representation. PLOS Comput. Biol. 16, e1007872 (2020)

    Article  Google Scholar 

  27. Wei, H., Liu, B.: iCircDA-MF: identification of circRNA-disease associations based on matrix factorization. Brief Bioinform. 21(4), 1356–1367 (2020)

    Article  Google Scholar 

  28. Zhang, W., Chenglin, Y., Wang, X., Liu, F.: Predicting CircRNA-disease associations through linear neighborhood label propagation method. IEEE Access 7, 83474–83483 (2019)

    Article  Google Scholar 

  29. Lu, C., Zeng, M., Zhang, F., Wu, F.-X., Li, M., Wang, J.: Deep matrix factorization improves prediction of human circRNA-disease associations. IEEE J. Biomed. Health Inform. 25(3), 891–899 (2021)

    Article  Google Scholar 

  30. Vural, H., Kaya, M., Alhajj, R.: A model based on random walk with restart to predict circRNA-disease associations on heterogeneous network. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 929–932 (2019)

    Google Scholar 

  31. Li, G., Yue, Y., Liang, C., Xiao, Q., Ding, P., Luo, J.: NCPCDA: network consistency projection for circRNA-disease association prediction. RSC Adv. 9(57), 33222–33228 (2019)

    Article  Google Scholar 

  32. Kingma, D.P., Ba, L.J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  33. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  34. Wu, W., Ji, P., Zhao, F.: CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 21(1), 1–14 (2020)

    Article  Google Scholar 

  35. Zhao, Z., et al.: circRNA disease: a manually curated database of experimentally supported circRNA-disease associations. Cell Death Dis. 9(5), 1–2 (2018)

    Article  Google Scholar 

  36. Key, T.J., Verkasalo, P.K., Banks, E.: Epidemiology of breast cancer. Lancet Oncol. 2(3), 133–140 (2001)

    Article  Google Scholar 

  37. Schwartzbaum, J.A., Fisher, J.L., Aldape, K.D., Wrensch, M.: Epidemiology and molecular pathology of glioma. Nat. Clin. Pract. Neurol. 2(9), 494–503 (2006)

    Article  Google Scholar 

  38. Ostrom, Q.T., et al.: The epidemiology of glioma in adults: a “state of the science” review. Neuro. Oncol. 16(7), 896–913 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Cheng Ni or Bin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, DX., Ji, CM., Wang, YT., Li, L., Ni, JC., Li, B. (2022). GCNMFCDA: A Method Based on Graph Convolutional Network and Matrix Factorization for Predicting circRNA-Disease Associations. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics