Abstract
The development of radiomics tools allows the extraction of quantitative features from medical images, thus enhancing the available information for clinicians. However, to date, these tools do not allow the user to complete the radiomics workflow by stopping at the feature extraction step. Therefore, a new software, namely matRadiomics, was developed as a user-friendly tool with the aim of allowing the user to carry out all the steps of a radiomics study. Using a single tool, i) biomedical images can be imported and inspected, ii) the target can be identified and segmented, iii) features can be extracted from the target, iv) reduced and selected, and v) used to build a predictive model using machine learning algorithms. As result, two different feature extractors can be chosen, a Matlab-based extractor, and the Pyradiomics extractor naturally integrated into matRadiomics. Extracted features can be selected using a hybrid descriptive-inferential method, while selected features can be used to train three different classifiers: Linear Discriminant Analysis, K-Nearest Neighbors, and Support Vector Machines. Models’ validation is performed using K-Fold Cross Validation and K-Fold Stratified Cross Validation. Finally, the performance metrics of each model are shown in the graphical interface of matRadiomics. In conclusion, the result of this study was the development, implementation, and validation of an innovative and complete radiomics tool that accompanies the researcher throughout the whole radiomics workflow.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alongi, P., et al.: Choline PET/CT features to predict survival outcome in high risk prostate cancer restaging: A preliminary machine-learning radiomics study. Q. J. Nucl. Med. Mol. Imaging (2020). https://doi.org/10.23736/S1824-4785.20.03227-6
Cutaia, G., et al.: Radiomics and prostate MRI: current role and future applications. J. Imaging. 7, 34 (2021). https://doi.org/10.3390/jimaging7020034
Stefano, A., et al.: Performance of radiomics features in the quantification of idiopathic pulmonary fibrosis from HRCT. Diagnostics 10, 306 (2020). https://doi.org/10.3390/DIAGNOSTICS10050306
Mayerhoefer, M.E., et al.: Introduction to radiomics. J. Nucl. Med. 61, 488–495 (2020). https://doi.org/10.2967/jnumed.118.222893
Cuocolo, R., et al.: Clinically significant prostate cancer detection on MRI: A radiomic shape features study. Eur. J. Radiol. 116, 144–149 (2019). https://doi.org/10.1016/j.ejrad.2019.05.006
Alongi, P., et al.: Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: An explorative study on machine learning feature classification in 94 patients. Eur. Radiol. 31(7), 4595–4605 (2021). https://doi.org/10.1007/s00330-020-07617-8
Vernuccio, F., Cannella, R., Comelli, A., Salvaggio, G., Lagalla, R., Midiri, M.: Radiomics and artificial intelligence: New frontiers in medicine. Recenti Prog. Med. 111, 130–135 (2020). https://doi.org/10.1701/3315.32853
Comelli, A., et al.: Radiomics: A new biomedical workflow to create a predictive model. In: Papież, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.) MIUA 2020. CCIS, vol. 1248, pp. 280–293. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4_22
Liberini, V., et al.: The future of cancer diagnosis, treatment and surveillance: A systemic review on immunotherapy and immuno-PET radiotracers. Molecules 26, 2201 (2021). https://doi.org/10.3390/molecules26082201
Laudicella, R., et al.: [68Ga]DOTATOC PET/CT Radiomics to Predict the Response in GEP-NETs Undergoing [177Lu]DOTATOC PRRT: The “Theragnomics” Concept. Cancers. 14, 984 (2022). https://doi.org/10.3390/cancers14040984
van Timmeren, J.E., Cester, D., Tanadini-Lang, S., Alkadhi, H., Baessler, B.: Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 11(1), 1–16 (2020). https://doi.org/10.1186/s13244-020-00887-2
Nioche, C., et al.: Lifex: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 78, 4786–4789 (2018). https://doi.org/10.1158/0008-5472.CAN-18-0125
Van Griethuysen, J.J., et al.: Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 77, 104–107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339
Zwanenburg, A., et al.: The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-base phenotyping. Radiology 295, 328–338 (2020). https://doi.org/10.1148/radiol.2020191145
Stefano, A., et al.: Robustness of pet radiomics features: Impact of co-registration with MRI. Appl. Sci. 11, 10170 (2021). https://doi.org/10.3390/app112110170
MathWorks: MATLAB. https://it.mathworks.com/products/matlab.html. Accessed 11 Apr 2022
Python. https://www.python.org/. Accessed 11 Apr 2022
MathWorks: MATLAB App Designer. https://it.mathworks.com/products/matlab/app-designer.html. Accessed 11 Apr 2022
Pianykh, O.S.: Digital Imaging and Communications in Medicine (DICOM). Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-10850-1
Pydicom. https://pydicom.github.io/. Accessed 11 Apr 2022
Comelli, A., Stefano, A., Benfante, V., Russo, G.: Normal and abnormal tissue classification in positron emission tomography oncological studies. Pattern Recognit. Image Anal. 28, 106–113 (2018). https://doi.org/10.1134/S1054661818010054
Stefano, A., Comelli, A.: Customized efficient neural network for covid-19 infected region identification in CT images. J. Imaging. 7, 131 (2021). https://doi.org/10.3390/jimaging7080131
Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 163–169. ACM (2016). https://doi.org/10.1145/37401.37422
Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 8, 1–15 (2012). https://doi.org/10.1080/10867651.2003.10487582
Hammer, P.: Marching cubes - file exchange - matlab central. https://it.mathworks.com/matlabcentral/fileexchange/32506-marching-cubes. Accessed 11 Apr 2022
Vallieres, M., et al.: Radiomics Toolbox. https://github.com/mvallieres/radiomics. Accessed 11 Apr 2022
Fornacon-Wood, I., et al.: Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur. Radiol. 30(11), 6241–6250 (2020). https://doi.org/10.1007/s00330-020-06957-9
Lesjak, Ž, et al.: A novel public MR image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus. Neuroinformatics 16(1), 51–63 (2017). https://doi.org/10.1007/s12021-017-9348-7
Barone, S., et al.: Hybrid descriptive-inferential method for key feature selection in prostate cancer radiomics. Appl. Stoch. Model. Bus. Ind. 37, 961–972 (2021). https://doi.org/10.1002/asmb.2642
Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Liu, H.: Advancing feature selection research. ASU Feature Selection Repository. https://jundongl.github.io/scikit-feature/OLD/home_old.html. Accessed 11 Apr 2022
Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53, 23–69 (2003). https://doi.org/10.1023/A:1025667309714
Kenji, K., Larry, A.R.: A practical approach to feature selection. In: Proceedings of the Machine Learning Proceedings 1992, pp. 249–256. Morgan Kauffman, San Francisco (1992). https://doi.org/10.1016/B978-1-55860-247-2.50037-1
Comelli, A., et al.: Active contour algorithm with discriminant analysis for delineating tumors in positron emission tomography. Artif. Intell. Med. 94, 67–78 (2019). https://doi.org/10.1016/j.artmed.2019.01.002
Comelli, A., et al.: K-nearest neighbor driving active contours to delineate biological tumor volumes. Eng. Appl. Artif. Intell. 81, 133–144 (2019). https://doi.org/10.1016/j.engappai.2019.02.005
Comelli, A., et al.: A kernel support vector machine based technique for Crohn’s disease classification in human patients. In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 262–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61566-0_25
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pasini, G., Bini, F., Russo, G., Marinozzi, F., Stefano, A. (2022). matRadiomics: From Biomedical Image Visualization to Predictive Model Implementation. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-13321-3_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13320-6
Online ISBN: 978-3-031-13321-3
eBook Packages: Computer ScienceComputer Science (R0)