Nothing Special   »   [go: up one dir, main page]

Skip to main content

matRadiomics: From Biomedical Image Visualization to Predictive Model Implementation

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Abstract

The development of radiomics tools allows the extraction of quantitative features from medical images, thus enhancing the available information for clinicians. However, to date, these tools do not allow the user to complete the radiomics workflow by stopping at the feature extraction step. Therefore, a new software, namely matRadiomics, was developed as a user-friendly tool with the aim of allowing the user to carry out all the steps of a radiomics study. Using a single tool, i) biomedical images can be imported and inspected, ii) the target can be identified and segmented, iii) features can be extracted from the target, iv) reduced and selected, and v) used to build a predictive model using machine learning algorithms. As result, two different feature extractors can be chosen, a Matlab-based extractor, and the Pyradiomics extractor naturally integrated into matRadiomics. Extracted features can be selected using a hybrid descriptive-inferential method, while selected features can be used to train three different classifiers: Linear Discriminant Analysis, K-Nearest Neighbors, and Support Vector Machines. Models’ validation is performed using K-Fold Cross Validation and K-Fold Stratified Cross Validation. Finally, the performance metrics of each model are shown in the graphical interface of matRadiomics. In conclusion, the result of this study was the development, implementation, and validation of an innovative and complete radiomics tool that accompanies the researcher throughout the whole radiomics workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alongi, P., et al.: Choline PET/CT features to predict survival outcome in high risk prostate cancer restaging: A preliminary machine-learning radiomics study. Q. J. Nucl. Med. Mol. Imaging (2020). https://doi.org/10.23736/S1824-4785.20.03227-6

  2. Cutaia, G., et al.: Radiomics and prostate MRI: current role and future applications. J. Imaging. 7, 34 (2021). https://doi.org/10.3390/jimaging7020034

    Article  Google Scholar 

  3. Stefano, A., et al.: Performance of radiomics features in the quantification of idiopathic pulmonary fibrosis from HRCT. Diagnostics 10, 306 (2020). https://doi.org/10.3390/DIAGNOSTICS10050306

    Article  Google Scholar 

  4. Mayerhoefer, M.E., et al.: Introduction to radiomics. J. Nucl. Med. 61, 488–495 (2020). https://doi.org/10.2967/jnumed.118.222893

    Article  Google Scholar 

  5. Cuocolo, R., et al.: Clinically significant prostate cancer detection on MRI: A radiomic shape features study. Eur. J. Radiol. 116, 144–149 (2019). https://doi.org/10.1016/j.ejrad.2019.05.006

    Article  Google Scholar 

  6. Alongi, P., et al.: Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: An explorative study on machine learning feature classification in 94 patients. Eur. Radiol. 31(7), 4595–4605 (2021). https://doi.org/10.1007/s00330-020-07617-8

    Article  Google Scholar 

  7. Vernuccio, F., Cannella, R., Comelli, A., Salvaggio, G., Lagalla, R., Midiri, M.: Radiomics and artificial intelligence: New frontiers in medicine. Recenti Prog. Med. 111, 130–135 (2020). https://doi.org/10.1701/3315.32853

    Article  Google Scholar 

  8. Comelli, A., et al.: Radiomics: A new biomedical workflow to create a predictive model. In: Papież, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.) MIUA 2020. CCIS, vol. 1248, pp. 280–293. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4_22

    Chapter  Google Scholar 

  9. Liberini, V., et al.: The future of cancer diagnosis, treatment and surveillance: A systemic review on immunotherapy and immuno-PET radiotracers. Molecules 26, 2201 (2021). https://doi.org/10.3390/molecules26082201

    Article  Google Scholar 

  10. Laudicella, R., et al.: [68Ga]DOTATOC PET/CT Radiomics to Predict the Response in GEP-NETs Undergoing [177Lu]DOTATOC PRRT: The “Theragnomics” Concept. Cancers. 14, 984 (2022). https://doi.org/10.3390/cancers14040984

  11. van Timmeren, J.E., Cester, D., Tanadini-Lang, S., Alkadhi, H., Baessler, B.: Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 11(1), 1–16 (2020). https://doi.org/10.1186/s13244-020-00887-2

    Article  Google Scholar 

  12. Nioche, C., et al.: Lifex: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 78, 4786–4789 (2018). https://doi.org/10.1158/0008-5472.CAN-18-0125

    Article  Google Scholar 

  13. Van Griethuysen, J.J., et al.: Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 77, 104–107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  Google Scholar 

  14. Zwanenburg, A., et al.: The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-base phenotyping. Radiology 295, 328–338 (2020). https://doi.org/10.1148/radiol.2020191145

    Article  Google Scholar 

  15. Stefano, A., et al.: Robustness of pet radiomics features: Impact of co-registration with MRI. Appl. Sci. 11, 10170 (2021). https://doi.org/10.3390/app112110170

    Article  Google Scholar 

  16. MathWorks: MATLAB. https://it.mathworks.com/products/matlab.html. Accessed 11 Apr 2022

  17. Python. https://www.python.org/. Accessed 11 Apr 2022

  18. MathWorks: MATLAB App Designer. https://it.mathworks.com/products/matlab/app-designer.html. Accessed 11 Apr 2022

  19. Pianykh, O.S.: Digital Imaging and Communications in Medicine (DICOM). Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-10850-1

    Book  Google Scholar 

  20. Pydicom. https://pydicom.github.io/. Accessed 11 Apr 2022

  21. Comelli, A., Stefano, A., Benfante, V., Russo, G.: Normal and abnormal tissue classification in positron emission tomography oncological studies. Pattern Recognit. Image Anal. 28, 106–113 (2018). https://doi.org/10.1134/S1054661818010054

    Article  Google Scholar 

  22. Stefano, A., Comelli, A.: Customized efficient neural network for covid-19 infected region identification in CT images. J. Imaging. 7, 131 (2021). https://doi.org/10.3390/jimaging7080131

    Article  Google Scholar 

  23. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 163–169. ACM (2016). https://doi.org/10.1145/37401.37422

  24. Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 8, 1–15 (2012). https://doi.org/10.1080/10867651.2003.10487582

    Article  Google Scholar 

  25. Hammer, P.: Marching cubes - file exchange - matlab central. https://it.mathworks.com/matlabcentral/fileexchange/32506-marching-cubes. Accessed 11 Apr 2022

  26. Vallieres, M., et al.: Radiomics Toolbox. https://github.com/mvallieres/radiomics. Accessed 11 Apr 2022

  27. Fornacon-Wood, I., et al.: Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur. Radiol. 30(11), 6241–6250 (2020). https://doi.org/10.1007/s00330-020-06957-9

    Article  Google Scholar 

  28. Lesjak, Ž, et al.: A novel public MR image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus. Neuroinformatics 16(1), 51–63 (2017). https://doi.org/10.1007/s12021-017-9348-7

    Article  Google Scholar 

  29. Barone, S., et al.: Hybrid descriptive-inferential method for key feature selection in prostate cancer radiomics. Appl. Stoch. Model. Bus. Ind. 37, 961–972 (2021). https://doi.org/10.1002/asmb.2642

    Article  MathSciNet  Google Scholar 

  30. Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Liu, H.: Advancing feature selection research. ASU Feature Selection Repository. https://jundongl.github.io/scikit-feature/OLD/home_old.html. Accessed 11 Apr 2022

  31. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53, 23–69 (2003). https://doi.org/10.1023/A:1025667309714

    Article  MATH  Google Scholar 

  32. Kenji, K., Larry, A.R.: A practical approach to feature selection. In: Proceedings of the Machine Learning Proceedings 1992, pp. 249–256. Morgan Kauffman, San Francisco (1992). https://doi.org/10.1016/B978-1-55860-247-2.50037-1

  33. Comelli, A., et al.: Active contour algorithm with discriminant analysis for delineating tumors in positron emission tomography. Artif. Intell. Med. 94, 67–78 (2019). https://doi.org/10.1016/j.artmed.2019.01.002

    Article  Google Scholar 

  34. Comelli, A., et al.: K-nearest neighbor driving active contours to delineate biological tumor volumes. Eng. Appl. Artif. Intell. 81, 133–144 (2019). https://doi.org/10.1016/j.engappai.2019.02.005

    Article  Google Scholar 

  35. Comelli, A., et al.: A kernel support vector machine based technique for Crohn’s disease classification in human patients. In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 262–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61566-0_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pasini, G., Bini, F., Russo, G., Marinozzi, F., Stefano, A. (2022). matRadiomics: From Biomedical Image Visualization to Predictive Model Implementation. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics