Abstract
In the digital age, knowledge processes can be formalized and simplified using task management systems. As they evolve, so must the underlying schemata to retain harmony and concurrency with the real world. In this work we present a graph neural network model that can help in reconciling these data. It can do so by leveraging a novel propagation rule that does not presume reciprocal dependency but is able to represent it still. Thereby it can predict structures in the form of usage links with high accuracy and assist in the reconstruction of missing information. We evaluate this model on a new knowledge management dataset and show that it is superior to traditional embedding methods. Further, we show that it outperforms related work in an established general link prediction task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Publicly available at https://github.com/wendli01/abres_gcn/blob/master/team_ip_1.zip.
References
Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)
Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou R3579X? Anonymized social networks, hidden patterns, and structural steganography. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 181–190. Association for Computing Machinery (2007)
Bergman, M.K.: Common sense view of knowledge graphs (2019)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Bresson, X., Laurent, T.: Residual gated graph convnets. arXiv preprint arXiv:1711.07553 (2017)
Bürstenbinder, J., et al.: Auf dem Weg in die Wissens- und Informationsgesellschaft. In: Jung, V., Warnecke, H.J. (eds.) Handbuch für die Telekommunikation, pp. 1273–1410. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-55450-6_6
Drucker, P.F.: Landmarks of Tomorrow: A Report on the New “Post-Modern’’ World. Harper & Brothers, New York (1959)
Drucker, P.F.: Knowledge-worker productivity: the biggest challenge. Calif. Manag. Rev. 41(2), 79–94 (1999). https://doi.org/10.2307/41165987
Giles, C.L., Bollacker, K.D., Lawrence, S.: CiteSeer: an automatic citation indexing system. In: Proceedings of the Third ACM Conference on Digital Libraries, pp. 89–98 (1998)
Greco, P.: The knowledge society. J. Sci. Commun. 06(04), C01 (2007). https://doi.org/10.22323/2.06040301. https://jcom.sissa.it/archive/06/04/Jcom0604(2007)C01
Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)
Hübscher, G., et al.: Graph-based managing and mining of processes and data in the domain of intellectual property. Inf. Syst. 106, 101844 (2022). https://doi.org/10.1016/j.is.2021.101844
Hübscher, G., Geist, V., Auer, D., Hübscher, N., Küng, J.: Integration of knowledge and task management in an evolving, communication-intensive environment. In: ACM (ed.) The 22nd International Conference on Information Integration and Web-Based Applications & Services (iiWAS 2020), pp. 407–416. ACM (2020). https://doi.org/10.1145/3428757.3429260
Hübscher, G., Geist, V., Auer, D., Hübscher, N., Küng, J.: Representation and presentation of knowledge and processes - an integrated approach for a dynamic communication-intensive environment. Int. J. Web Inf. Syst. 17(6), 669–697 (2021). https://doi.org/10.1108/IJWIS-03-2021-0031
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26, pp. 3111–3119 (2013)
Nonaka, I.: The knowledge-creating company: reprint of the 1991 article, managing for the long term, best of HBR, Nov.–Dec. 1991. Harv. Bus. Rev. 162–171 (2007)
Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, Oxford (1995)
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)
Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 459–467 (2018)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Salha, G., Limnios, S., Hennequin, R., Tran, V.A., Vazirgiannis, M.: Gravity-inspired graph autoencoders for directed link prediction. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 589–598 (2019)
Steinbicker, J.: Zur Theorie der Informationsgesellschaft: Ein Vergleich der Ansätze von Peter Drucker, Daniel Bell und Manuel Castells. Lehrtexte Soziologie, Leske + Budrich, Opladen (2001)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Wang, X., Vinel, A.: Benchmarking graph neural networks on link prediction. arXiv preprint arXiv:2102.12557 (2021)
Yu, Y., Wang, X.: Link prediction in directed network and its application in microblog. Math. Probl. Eng. 2014 (2014)
Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)
Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009). https://doi.org/10.1140/epjb/e2009-00335-8
Acknowledgements
The research reported in this paper has been supported by the FFG BRIDGE project KnoP-2D (grant no. 871299).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wendlinger, L., Hübscher, G., Ekelhart, A., Granitzer, M. (2022). Reconciliation of Mental Concepts with Graph Neural Networks. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13427. Springer, Cham. https://doi.org/10.1007/978-3-031-12426-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-12426-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12425-9
Online ISBN: 978-3-031-12426-6
eBook Packages: Computer ScienceComputer Science (R0)