Abstract
Cyber range training is a promising approach to address the shortage of skilled cybersecurity experts in organizations worldwide. Seeking to make the training of those experts as efficacious and efficient as possible, we investigate the potential of visual programming languages (VPLs) for training in cyber ranges. For this matter, we integrate the VPL Blockly into an existing cyber range concept. To evaluate its effect on the learning process of the trainees we conducted a user study with an experimental group using the VPL and a control group using textual programming. The evaluation results demonstrated a positive impact of the VPL on the trainees’ learning experience. The trainees in the VPL group achieved equally good learning outcomes as those in the control group but rated the subjective workload as lower and perceived the training as more interesting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, Advances in Psychology, vol. 52, pp. 139–183. North-Holland (1988)
Bhatt, S., Manadhata, P.K., Zomlot, L.: The operational role of security information and event management systems. IEEE Secur. Priv. 12(5), 35–41 (2014)
Furnell, S., Fischer, P., Finch, A.: Can’t get the staff? The growing need for cyber-security skills. Comput. Fraud Secur. 2017(2), 5–10 (2017)
Hart, S.G.: NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 904–908 (2006)
ISC\(^2\): A resilient cybersecurity profession charts the path forward - ISC\(^2\) cybersecurity workforce study 2021. Technical report, International Information System Security Certification Consortium (2021)
Kavallieratos, G., Katsikas, S.K., Gkioulos, V.: Towards a cyber-physical range. In: Proceedings of the 5th on Cyber-Physical System Security Workshop, pp. 25–34 (2019)
Keller, J.M.: Development and use of the ARCS model of instructional design. J. Instr. Dev. 10(3), 2–10 (1987)
Lédeczi, Á., et al.: Teaching cybersecurity with networked robots. In: Proceedings of the 50th ACM Technical Symposium on Computer Science Education, pp. 885–891 (2019)
Lye, S.Y., Koh, J.H.L.: Review on teaching and learning of computational thinking through programming: what is next for K-12? Comput. Hum. Behav. 41, 51–61 (2014)
National Initiative for Cybersecurity Education (NICE): The Cyber Range: A Guide. Technical report, National Initiative for Cybersecurity Education (NICE) (2020)
Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., Lahmine, S.: Learning basic programming concepts by creating games with scratch programming environment. Proc. Soc. Behav. Sci. 191, 1479–1482 (2015)
Pescatore, J., Filkins, B.: Closing the critical skills gap for modern and effective security operations centers (SOCs). SANS Institute (2020)
Rao, A., Bihani, A., Nair, M.: Milo: a visual programming environment for data science education. In: 2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 211–215 (2018)
Schmutz, P., Heinz, S., Métrailler, Y., Opwis, K.: Cognitive load in eCommerce applications-measurement and effects on user satisfaction. Adv. Hum.-Comput. Interact. 2009, 1–9 (2009)
Torgerson, C.J., Torgerson, D.J.: The need for randomised controlled trials in educational research. Br. J. Educ. Stud. 49, 316–328 (2001)
Tsai, C.Y.: Improving students’ understanding of basic programming concepts through visual programming language: the role of self-efficacy. Comput. Hum. Behav. 95, 224–232 (2019)
Vielberth, M., Bohm, F., Fichtinger, I., Pernul, G.: Security operations center: a systematic study and open challenges. IEEE Access 8, 227756–227779 (2020)
Vielberth, M., Glas, M., Dietz, M., Karagiannis, S., Magkos, E., Pernul, G.: A digital twin-based cyber range for SOC analysts. In: Barker, K., Ghazinour, K. (eds.) DBSec 2021. LNCS, vol. 12840, pp. 293–311. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81242-3_17
Vykopal, J., Vizvary, M., Oslejsek, R., Celeda, P., Tovarnak, D.: Lessons learned from complex hands-on defence exercises in a cyber range. In: Proceedings - Frontiers in Education Conference, FIE, pp. 1–8 (2017)
Yamin, M.M., Katt, B., Gkioulos, V.: Cyber ranges and security testbeds: scenarios, functions, tools and architecture. Comput. Secur. 88, 101636 (2020)
Acknowledgment
This work is partly performed under the INSIST project, which is supported under contract by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (DIK0338/01).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Glas, M., Vielberth, M., Reittinger, T., Böhm, F., Pernul, G. (2022). Visual Programming in Cyber Range Training to Improve Skill Development. In: Clarke, N., Furnell, S. (eds) Human Aspects of Information Security and Assurance. HAISA 2022. IFIP Advances in Information and Communication Technology, vol 658. Springer, Cham. https://doi.org/10.1007/978-3-031-12172-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-12172-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12171-5
Online ISBN: 978-3-031-12172-2
eBook Packages: Computer ScienceComputer Science (R0)