Abstract
Distance learning institutions record a high failure and dropout rate every year. This phenomenon is due to several reasons such as the total autonomy of learners and the lack of regular monitoring. Therefore, education stakeholders need a system which enables them the prediction of at-risk learners. This solution is commonly adopted in the state of the art. However, its evaluation is not generic and does not take into account the diversity of learners. In this paper, we propose a complete methodology which objective is a more detailed evaluation of a proposed educational prediction system. This process aims to ensure good performances of the system, regardless of the learning profiles. The proposed methodology combines both the identification of personas existing in a learning context and the evaluation of a prediction system according to it. To meet this challenge, we used a real dataset of k-12 learners enrolled in a french distance education institution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adnan, M., et al.: Predicting at-risk students at different percentages of course length for early intervention using machine learning models. IEEE Access 9, 7519–7539 (2021)
Ben Soussia, A., Roussanaly, A., Boyer, A.: An in-depth methodology to predict at-risk learners. In: De Laet, T., Klemke, R., Alario-Hoyos, C., Hilliger, I., Ortega-Arranz, A. (eds.) EC-TEL 2021. LNCS, vol. 12884, pp. 193–206. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86436-1_15
Anjeela Jokhan, B.S., Singh, S.: Early warning system as a predictor for student performance in higher education blended courses. Stud. High. Educ. 44(11), 1900–1911 (2018)
Arnold, K.E., Pistilli, M.D.: Course signals at purdue: using learning analytics to increase student success. In: Proceedings of the 2nd International Conference on Learning Analytics And Knowledge. pp. 267–270 (2012)
Bañeres, D., Rodríguez, M.E., Guerrero-Roldán, A.E., Karadeniz, A.: An early warning system to detect at-risk students in online higher education. Appl. Sci. 10(13), 4427 (2020)
Ben soussia, A., Labba, C., Roussanaly, A., Boyer, A.: Assess performance prediction systems: Beyond precision indicators. In: CSEDU (2022)
Boroujeni, M.S., Sharma, K., Kidziński, Ł, Lucignano, L., Dillenbourg, P.: How to quantify student’s regularity? In: Verbert, K., Sharples, M., Klobučar, T. (eds.) EC-TEL 2016. LNCS, vol. 9891, pp. 277–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45153-4_21
Brooks, C., Greer, J.: Explaining predictive models to learning specialists using personas. In: Proceedins of the Fourth International Conference on Learning Analytics And Knowledge - LAK 2014, pp. 26–30. ACM Press (2014). https://doi.org/10.1145/2567574.2567612,http://dl.acm.org/citation.cfm?doid=2567574.2567612
Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 1(2), 224–227 (1979)
Holmes, W., et al.: Ethics of AI in education: Towards a community-wide framework. Int. J. Artifi. Intell. Educ. 1–23 (2021)
Hussain, M., Zhu, W., Zhang, W., Abidi, S.M.R.: Student engagement predictions in an e-learning system and their impact on student course assessment scores. In: Computational Intelligence and Neuroscience (2018)
Lee, S., Chung, J.Y.: The machine learning-based dropout early warning system for improving the performance of dropout prediction. Appl. Sci. 9(15), 3093 (2019)
Likas, A., Vlassis, N., Verbeek, J.: The global k-means clustering algorithm. Pattern Recogn. 36, 451–461 (2003). https://doi.org/10.1016/S0031-3203(02)00060-2
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17, ISSN: 2374-8486
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Philipp, M., Rusch, T., Hornik, K., Strobl, C.: Measuring the stability of results from supervised statistical learning. J. Comput. Graph. Stat. 27(4), 685–700 (2018)
Pluck, G., Johnson, H.L.: Stimulating curiosity to enhance learning. GESJ: Educ. Sci. Psychol. 2(19) (2011). ISSN 1512-1801
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appli. Mat. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7
Siemens, G., Long, P.: Penetrating the fog: analytics in learning and education. EDUCAUSE Rev. 46(5), 30 (2011)
Slade, S., Prinsloo, P.: Learning analytics: ethical issues and dilemmas. Am. Behav. Sci. 57(10), 1510–1529 (2013). https://doi.org/10.1177/0002764213479366
Teinemaa, I., Dumas, M., Leontjeva, A., Maggi, F.M.: Temporal stability in predictive process monitoring. Data Min. Knowl. Disc. 32(5), 1306–1338 (2018). https://doi.org/10.1007/s10618-018-0575-9
Treuillier, C., Boyer, A.: Identification of class-representative learner personas. In: Learning Analytics for Smart Learning Environments (LA4LSE) Workshop, at EC-TEL 2021 (2021)
Xu, D., Jaggars, S.S.: Performance gaps between online and face-to-face courses: differences across types of students and academic subject areas. J. High. Educ. 85(5), 633–659 (2014). https://doi.org/10.1080/00221546.2014.11777343
Zhang, N., Biswas, G., Dong, Y.: Characterizing students’ learning behaviors using unsupervised learning methods. In: André, E., Baker, R., Hu, X., Rodrigo, M.M.T., du Boulay, B. (eds.) AIED 2017. LNCS (LNAI), vol. 10331, pp. 430–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61425-0_36
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Ben Soussia, A., Treuillier, C., Roussanaly, A., Boyer, A. (2022). Learning Profiles to Assess Educational Prediction Systems. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2022. Lecture Notes in Computer Science, vol 13355. Springer, Cham. https://doi.org/10.1007/978-3-031-11644-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-11644-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11643-8
Online ISBN: 978-3-031-11644-5
eBook Packages: Computer ScienceComputer Science (R0)