Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Profiles to Assess Educational Prediction Systems

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13355))

Included in the following conference series:

Abstract

Distance learning institutions record a high failure and dropout rate every year. This phenomenon is due to several reasons such as the total autonomy of learners and the lack of regular monitoring. Therefore, education stakeholders need a system which enables them the prediction of at-risk learners. This solution is commonly adopted in the state of the art. However, its evaluation is not generic and does not take into account the diversity of learners. In this paper, we propose a complete methodology which objective is a more detailed evaluation of a proposed educational prediction system. This process aims to ensure good performances of the system, regardless of the learning profiles. The proposed methodology combines both the identification of personas existing in a learning context and the evaluation of a prediction system according to it. To meet this challenge, we used a real dataset of k-12 learners enrolled in a french distance education institution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html.

  2. 2.

    https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html.

References

  1. Adnan, M., et al.: Predicting at-risk students at different percentages of course length for early intervention using machine learning models. IEEE Access 9, 7519–7539 (2021)

    Article  Google Scholar 

  2. Ben Soussia, A., Roussanaly, A., Boyer, A.: An in-depth methodology to predict at-risk learners. In: De Laet, T., Klemke, R., Alario-Hoyos, C., Hilliger, I., Ortega-Arranz, A. (eds.) EC-TEL 2021. LNCS, vol. 12884, pp. 193–206. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86436-1_15

    Chapter  Google Scholar 

  3. Anjeela Jokhan, B.S., Singh, S.: Early warning system as a predictor for student performance in higher education blended courses. Stud. High. Educ. 44(11), 1900–1911 (2018)

    Article  Google Scholar 

  4. Arnold, K.E., Pistilli, M.D.: Course signals at purdue: using learning analytics to increase student success. In: Proceedings of the 2nd International Conference on Learning Analytics And Knowledge. pp. 267–270 (2012)

    Google Scholar 

  5. Bañeres, D., Rodríguez, M.E., Guerrero-Roldán, A.E., Karadeniz, A.: An early warning system to detect at-risk students in online higher education. Appl. Sci. 10(13), 4427 (2020)

    Google Scholar 

  6. Ben soussia, A., Labba, C., Roussanaly, A., Boyer, A.: Assess performance prediction systems: Beyond precision indicators. In: CSEDU (2022)

    Google Scholar 

  7. Boroujeni, M.S., Sharma, K., Kidziński, Ł, Lucignano, L., Dillenbourg, P.: How to quantify student’s regularity? In: Verbert, K., Sharples, M., Klobučar, T. (eds.) EC-TEL 2016. LNCS, vol. 9891, pp. 277–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45153-4_21

    Chapter  Google Scholar 

  8. Brooks, C., Greer, J.: Explaining predictive models to learning specialists using personas. In: Proceedins of the Fourth International Conference on Learning Analytics And Knowledge - LAK 2014, pp. 26–30. ACM Press (2014). https://doi.org/10.1145/2567574.2567612,http://dl.acm.org/citation.cfm?doid=2567574.2567612

  9. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 1(2), 224–227 (1979)

    Article  Google Scholar 

  10. Holmes, W., et al.: Ethics of AI in education: Towards a community-wide framework. Int. J. Artifi. Intell. Educ. 1–23 (2021)

    Google Scholar 

  11. Hussain, M., Zhu, W., Zhang, W., Abidi, S.M.R.: Student engagement predictions in an e-learning system and their impact on student course assessment scores. In: Computational Intelligence and Neuroscience (2018)

    Google Scholar 

  12. Lee, S., Chung, J.Y.: The machine learning-based dropout early warning system for improving the performance of dropout prediction. Appl. Sci. 9(15), 3093 (2019)

    Google Scholar 

  13. Likas, A., Vlassis, N., Verbeek, J.: The global k-means clustering algorithm. Pattern Recogn. 36, 451–461 (2003). https://doi.org/10.1016/S0031-3203(02)00060-2

    Article  Google Scholar 

  14. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17, ISSN: 2374-8486

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Philipp, M., Rusch, T., Hornik, K., Strobl, C.: Measuring the stability of results from supervised statistical learning. J. Comput. Graph. Stat. 27(4), 685–700 (2018)

    Article  MathSciNet  Google Scholar 

  17. Pluck, G., Johnson, H.L.: Stimulating curiosity to enhance learning. GESJ: Educ. Sci. Psychol. 2(19) (2011). ISSN 1512-1801

    Google Scholar 

  18. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appli. Mat. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  19. Siemens, G., Long, P.: Penetrating the fog: analytics in learning and education. EDUCAUSE Rev. 46(5), 30 (2011)

    Google Scholar 

  20. Slade, S., Prinsloo, P.: Learning analytics: ethical issues and dilemmas. Am. Behav. Sci. 57(10), 1510–1529 (2013). https://doi.org/10.1177/0002764213479366

    Article  Google Scholar 

  21. Teinemaa, I., Dumas, M., Leontjeva, A., Maggi, F.M.: Temporal stability in predictive process monitoring. Data Min. Knowl. Disc. 32(5), 1306–1338 (2018). https://doi.org/10.1007/s10618-018-0575-9

    Article  MathSciNet  Google Scholar 

  22. Treuillier, C., Boyer, A.: Identification of class-representative learner personas. In: Learning Analytics for Smart Learning Environments (LA4LSE) Workshop, at EC-TEL 2021 (2021)

    Google Scholar 

  23. Xu, D., Jaggars, S.S.: Performance gaps between online and face-to-face courses: differences across types of students and academic subject areas. J. High. Educ. 85(5), 633–659 (2014). https://doi.org/10.1080/00221546.2014.11777343

    Article  Google Scholar 

  24. Zhang, N., Biswas, G., Dong, Y.: Characterizing students’ learning behaviors using unsupervised learning methods. In: André, E., Baker, R., Hu, X., Rodrigo, M.M.T., du Boulay, B. (eds.) AIED 2017. LNCS (LNAI), vol. 10331, pp. 430–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61425-0_36

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amal Ben Soussia , Célina Treuillier , Azim Roussanaly or Anne Boyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ben Soussia, A., Treuillier, C., Roussanaly, A., Boyer, A. (2022). Learning Profiles to Assess Educational Prediction Systems. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2022. Lecture Notes in Computer Science, vol 13355. Springer, Cham. https://doi.org/10.1007/978-3-031-11644-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11644-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11643-8

  • Online ISBN: 978-3-031-11644-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics