Nothing Special   »   [go: up one dir, main page]

Skip to main content

Analysis of Loss Functions for Image Reconstruction Using Convolutional Autoencoder

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1568))

Included in the following conference series:

  • 2003 Accesses

Abstract

In recent years, several loss functions have been proposed for the image reconstruction task of convolutional autoencoders (CAEs). In this paper, a performance analysis of a CAE with respect to different loss functions is presented. Quality of reconstruction is analyzed using the mean Square error (MSE), binary cross-entropy (BCE), Sobel, Laplacian, and Focal binary loss functions. To evaluate the performance of different loss functions, a vanilla autoencoder is trained on eight datasets having diversity in terms of application domains, image dimension, color space, and the number of images in the dataset. MSE, peak signal to noise ratio (PSNR), and structural similarity index (SSIM) metrics have been used as the performance measures on all eight datasets. The assessment shows that the MSE loss function outperforms two datasets with a small image dimension and a large number of images. At the same time, BCE excels on six datasets with high image dimensions and a small number of training samples in datasets compared with the Sobel and Laplacian loss functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Odaibo, S.: Tutorial: deriving the standard variational autoencoder (VAE) loss function. arXiv preprint arXiv:1907.08956 (2019)

  2. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. arXiv preprint arXiv:1906.02691 (2019)

  3. Gondara, L.: Medical image denoising using convolutional denoising autoencoders. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 241–246. IEEE (2016)

    Google Scholar 

  4. Fazlali, H., Shirani, S., McDonald, M., Brown, D., Kirubarajan, T.: Aerial image dehazing using a deep convolutional autoencoder. Multimedia Tools Appl. 79(39), 29493–29511 (2020)

    Google Scholar 

  5. Hong, J.-P., Cho, S.-J., Lee, J., Ji, S.-W., Ko, S.-J.: Single image deblurring based on auxiliary Sobel loss function. In: 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), pp. 1–3. IEEE (2020)

    Google Scholar 

  6. Chen, M., Shi, X., Zhang, Y., Wu, D., Guizani, M.: Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans. Big Data 7, 750–758 (2017)

    Google Scholar 

  7. Chow, J.K., Su, Z., Wu, J., Tan, P.S., Mao, X., Wang, Y.-H.: Anomaly detection of defects on concrete structures with the convolutional autoencoder. Adv. Eng. Inform. 45, 101105 (2020)

    Google Scholar 

  8. Bai, J., Dai, X., Wu, Q., Xie, L.: Limited-view CT reconstruction based on autoencoder-like generative adversarial networks with joint loss. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5570–5574. IEEE (2018)

    Google Scholar 

  9. Liu, X., Gherbi, A., Wei, Z., Li, W., Cheriet, M.: Multispectral image reconstruction from color images using enhanced variational autoencoder and generative adversarial network. IEEE Access 9, 1666–1679 (2020)

    Article  Google Scholar 

  10. Pandey, R.K., Saha, N., Karmakar, S., Ramakrishnan, A.G.: MSCE: an edge-preserving robust loss function for improving super-resolution algorithms. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11306, pp. 566–575. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04224-0_49

    Chapter  Google Scholar 

  11. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. imaging 3(1), 47–57 (2016)

    Article  Google Scholar 

  12. Li, S., Xu, X., Nie, L., Chua, T.-S.: Laplacian-steered neural style transfer. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1716–1724 (2017)

    Google Scholar 

  13. Zhu, Q., Wang, H., Zhang, R.: Wavelet loss function for auto-encoder. IEEE Access 9, 27101–27108 (2021)

    Google Scholar 

  14. Ephraim, Y., Malah, D.: Speech enhancement using a minimum mean-square error log-spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Process. 33(2), 443–445 (1985)

    Article  Google Scholar 

  15. Creswell, A., Arulkumaran, K., Bharath, A.A.: On denoising autoencoders trained to minimise binary cross-entropy. arXiv preprint arXiv:1708.08487 (2017)

  16. Lu, Z., Chen, Y.: Single image super resolution based on a modified U-net with mixed gradient loss. arXiv preprint arXiv:1911.09428 (2019)

  17. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the Sobel operator. IEEE J. Solid State Circuits 23(2), 358–367 (1988)

    Google Scholar 

  18. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  19. Wang, C., Deng, C., Wang, S.: Imbalance-XGBoost: leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost. Pattern Recognit. Lett. 136, 190–197 (2020)

    Article  Google Scholar 

  20. Ma, X., Huang, H., Wang, Y., Romano, S., Erfani, S., Bailey, J.: Normalized loss functions for deep learning with noisy labels. In: International Conference on Machine Learning, pp. 6543–6553. PMLR (2020)

    Google Scholar 

  21. Pogorelov, K., et al.: KVASIR: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 164–169 (2017)

    Google Scholar 

  22. Chakrabarty, N.: Brain MRI images for brain tumor detection. https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection (2019)

  23. Rahman, T., et al.: Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol. Med. 132, 104319 (2021)

    Google Scholar 

  24. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian institute for advanced research), vol. 5, vol. 4 (2010). http://www.cs.toronto.edu/kriz/cifar.html

  25. Vicente, T.F.Y., Hou, L., Yu, C.-P., Hoai, M., Samaras, D.: Large-scale training of shadow detectors with noisily-annotated shadow examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 816–832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_49

    Chapter  Google Scholar 

  26. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (COIL-100) (1996)

    Google Scholar 

  27. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  28. Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? ACM Trans. Graph. (Proc. SIGGRAPH) 31(4), 44:1–44:10 (2012)

    Google Scholar 

  29. Silva, E.A., Panetta, K., Agaian, S.S.: Quantifying image similarity using measure of enhancement by entropy. In: Mobile Multimedia/Image Processing for Military and Security Applications 2007, vol. 6579, p. 65790U. International Society for Optics and Photonics (2007)

    Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritee Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khare, N., Thakur, P.S., Khanna, P., Ojha, A. (2022). Analysis of Loss Functions for Image Reconstruction Using Convolutional Autoencoder. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics