Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weighted Metamorphosis for Registration of Images with Different Topologies

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13386))

Included in the following conference series:

Abstract

We present an extension of the Metamorphosis algorithm to align images with different topologies and/or appearances. We propose to restrict/limit the metamorphic intensity additions using a time-varying spatial weight function. It can be used to model prior knowledge about the topological/appearance changes (e.g., tumour/oedema). We show that our method improves the disentanglement between anatomical (i.e., shape) and topological (i.e., appearance) changes, thus improving the registration interpretability and its clinical usefulness. As clinical application, we validated our method using MR brain tumour images from the BraTS 2021 dataset. We showed that our method can better align healthy brain templates to images with brain tumours than existing state-of-the-art methods. Our PyTorch code is freely available here: https://github.com/antonfrancois/Demeter_metamorphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113

    Chapter  Google Scholar 

  2. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)

    Article  Google Scholar 

  3. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  4. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv:2107.02314 (2021)

  5. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  6. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  7. Brett, M., Leff, A., Rorden, C., Ashburner, J.: Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage 14(2), 486–500 (2001)

    Article  Google Scholar 

  8. Bône, A., Vernhet, P., Colliot, O., Durrleman, S.: Learning joint shape and appearance representations with metamorphic auto-encoders. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 202–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_20

    Chapter  Google Scholar 

  9. François, A., Gori, P., Glaunès, J.: Metamorphic image registration using a semi-lagrangian scheme. In: SEE GSI (2021)

    Google Scholar 

  10. Gooya, A., Biros, G., Davatzikos, C.: Deformable registration of glioma images using EM algorithm and diffusion reaction modeling. IEEE Trans. Med. Imaging 30(2), 375–390 (2011)

    Article  Google Scholar 

  11. Gooya, A., Pohl, K., Bilello, M., Cirillo, L., Biros, G., Melhem, E., Davatzikos, C.: GLISTR: glioma image segmentation and registration. IEEE Trans. Med. Imaging 31, 1941–54 (2012)

    Article  Google Scholar 

  12. Han, X., et al.: A deep network for joint registration and reconstruction of images with pathologies. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 342–352. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_35

    Chapter  Google Scholar 

  13. Holm, D.D., Trouvé, A., Younes, L.: The euler-poincaré theory of metamorphosis. Q. Appl. Math. 67(4), 661–685 (2009)

    Article  Google Scholar 

  14. Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X.: LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. NeuroImage 81, 470–483 (2013)

    Article  Google Scholar 

  15. Maillard, M., François, A., Glaunès, J., Bloch, I., Gori, P.: A deep residual learning implementation of metamorphosis. In: IEEE ISBI (2022)

    Google Scholar 

  16. Mansilla, L., Milone, D.H., Ferrante, E.: Learning deformable registration of medical images with anatomical constraints. Neural Netw. 124, 269–279 (2020)

    Article  Google Scholar 

  17. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  18. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  19. Mok, T.C.W., Chung, A.C.S.: large deformation diffeomorphic image registration with laplacian pyramid networks. In: MICCAI (2020)

    Google Scholar 

  20. Niethammer, M., et al.: Geometric Metamorphosis. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 639–646. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_78

    Chapter  Google Scholar 

  21. Niethammer, M., Kwitt, R., Vialard, F.X.: Metric learning for image registration. In: CVPR, pp. 8455–8464 (2019)

    Google Scholar 

  22. Rohé, M.M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: MICCAI, p. 266 (2017)

    Google Scholar 

  23. Scheufele, K., et al.: Coupling brain-tumor biophysical models and diffeomorphic image registration. Comput. Methods Appl. Mech Eng. 347, 533–567 (2019)

    Article  MathSciNet  Google Scholar 

  24. Sdika, M., Pelletier, D.: Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Hum. Brain Mapp. 30(4), 1060–1067 (2009)

    Article  Google Scholar 

  25. Shu, Z., et al.: Deforming autoencoders: unsupervised disentangling of shape and appearance. In: ECCV (2018)

    Google Scholar 

  26. Torsten, R., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2010)

    Google Scholar 

  27. Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005)

    Article  MathSciNet  Google Scholar 

  28. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97(2), 229–241 (2011)

    Article  MathSciNet  Google Scholar 

  29. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration - a deep learning approach. NeuroImage 158, 378–396 (2017)

    Article  Google Scholar 

  30. Younes, L.: Deformable objects and matching functionals. In: Shapes and Diffeomorphisms. AMS, vol. 171, pp. 243–289. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58496-5_9

    Chapter  MATH  Google Scholar 

  31. Zhang, M., Fletcher, P.T.: Fast diffeomorphic image registration via fourier-approximated lie algebras. Int. J. Comput. Vis. 127(1), 61–73 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

M. Maillard was supported by a grant of IMT, Fondation Mines-Télécom and Institut Carnot TSN, through the “Futur & Ruptures” program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anton François , Pietro Gori or Joan Glaunès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

François, A. et al. (2022). Weighted Metamorphosis for Registration of Images with Different Topologies. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11203-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11202-7

  • Online ISBN: 978-3-031-11203-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics