Abstract
We present an extension of the Metamorphosis algorithm to align images with different topologies and/or appearances. We propose to restrict/limit the metamorphic intensity additions using a time-varying spatial weight function. It can be used to model prior knowledge about the topological/appearance changes (e.g., tumour/oedema). We show that our method improves the disentanglement between anatomical (i.e., shape) and topological (i.e., appearance) changes, thus improving the registration interpretability and its clinical usefulness. As clinical application, we validated our method using MR brain tumour images from the BraTS 2021 dataset. We showed that our method can better align healthy brain templates to images with brain tumours than existing state-of-the-art methods. Our PyTorch code is freely available here: https://github.com/antonfrancois/Demeter_metamorphosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113
Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)
Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv:2107.02314 (2021)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)
Brett, M., Leff, A., Rorden, C., Ashburner, J.: Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage 14(2), 486–500 (2001)
Bône, A., Vernhet, P., Colliot, O., Durrleman, S.: Learning joint shape and appearance representations with metamorphic auto-encoders. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 202–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_20
François, A., Gori, P., Glaunès, J.: Metamorphic image registration using a semi-lagrangian scheme. In: SEE GSI (2021)
Gooya, A., Biros, G., Davatzikos, C.: Deformable registration of glioma images using EM algorithm and diffusion reaction modeling. IEEE Trans. Med. Imaging 30(2), 375–390 (2011)
Gooya, A., Pohl, K., Bilello, M., Cirillo, L., Biros, G., Melhem, E., Davatzikos, C.: GLISTR: glioma image segmentation and registration. IEEE Trans. Med. Imaging 31, 1941–54 (2012)
Han, X., et al.: A deep network for joint registration and reconstruction of images with pathologies. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 342–352. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_35
Holm, D.D., Trouvé, A., Younes, L.: The euler-poincaré theory of metamorphosis. Q. Appl. Math. 67(4), 661–685 (2009)
Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X.: LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. NeuroImage 81, 470–483 (2013)
Maillard, M., François, A., Glaunès, J., Bloch, I., Gori, P.: A deep residual learning implementation of metamorphosis. In: IEEE ISBI (2022)
Mansilla, L., Milone, D.H., Ferrante, E.: Learning deformable registration of medical images with anatomical constraints. Neural Netw. 124, 269–279 (2020)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)
Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)
Mok, T.C.W., Chung, A.C.S.: large deformation diffeomorphic image registration with laplacian pyramid networks. In: MICCAI (2020)
Niethammer, M., et al.: Geometric Metamorphosis. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 639–646. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_78
Niethammer, M., Kwitt, R., Vialard, F.X.: Metric learning for image registration. In: CVPR, pp. 8455–8464 (2019)
Rohé, M.M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: MICCAI, p. 266 (2017)
Scheufele, K., et al.: Coupling brain-tumor biophysical models and diffeomorphic image registration. Comput. Methods Appl. Mech Eng. 347, 533–567 (2019)
Sdika, M., Pelletier, D.: Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Hum. Brain Mapp. 30(4), 1060–1067 (2009)
Shu, Z., et al.: Deforming autoencoders: unsupervised disentangling of shape and appearance. In: ECCV (2018)
Torsten, R., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2010)
Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005)
Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97(2), 229–241 (2011)
Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration - a deep learning approach. NeuroImage 158, 378–396 (2017)
Younes, L.: Deformable objects and matching functionals. In: Shapes and Diffeomorphisms. AMS, vol. 171, pp. 243–289. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58496-5_9
Zhang, M., Fletcher, P.T.: Fast diffeomorphic image registration via fourier-approximated lie algebras. Int. J. Comput. Vis. 127(1), 61–73 (2018)
Acknowledgement
M. Maillard was supported by a grant of IMT, Fondation Mines-Télécom and Institut Carnot TSN, through the “Futur & Ruptures” program.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
François, A. et al. (2022). Weighted Metamorphosis for Registration of Images with Different Topologies. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-11203-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11202-7
Online ISBN: 978-3-031-11203-4
eBook Packages: Computer ScienceComputer Science (R0)